File: | programs/pluto/kernel.c |
Warning: | line 2149, column 3 Value stored to 'encap_oneshot' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* routines that interface with the kernel's IPsec mechanism, for libreswan |
2 | * |
3 | * Copyright (C) 1997 Angelos D. Keromytis. |
4 | * Copyright (C) 1998-2010 D. Hugh Redelmeier. |
5 | * Copyright (C) 2003-2008 Michael Richardson <mcr@xelerance.com> |
6 | * Copyright (C) 2007-2010 Paul Wouters <paul@xelerance.com> |
7 | * Copyright (C) 2008-2010 David McCullough <david_mccullough@securecomputing.com> |
8 | * Copyright (C) 2010 Bart Trojanowski <bart@jukie.net> |
9 | * Copyright (C) 2009-2010 Tuomo Soini <tis@foobar.fi> |
10 | * Copyright (C) 2010 Avesh Agarwal <avagarwa@redhat.com> |
11 | * Copyright (C) 2010-2019 D. Hugh Redelmeier <hugh@mimosa.com> |
12 | * Copyright (C) 2012-2015 Paul Wouters <paul@libreswan.org> |
13 | * Copyright (C) 2013 Kim B. Heino <b@bbbs.net> |
14 | * Copyright (C) 2016-2019 Andrew Cagney <cagney@gnu.org> |
15 | * Copyright (C) 2019 Paul Wouters <pwouters@redhat.com> |
16 | * Copyright (C) 2017 Mayank Totale <mtotale@gmail.com> |
17 | * |
18 | * This program is free software; you can redistribute it and/or modify it |
19 | * under the terms of the GNU General Public License as published by the |
20 | * Free Software Foundation; either version 2 of the License, or (at your |
21 | * option) any later version. See <https://www.gnu.org/licenses/gpl2.txt>. |
22 | * |
23 | * This program is distributed in the hope that it will be useful, but |
24 | * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
25 | * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
26 | * for more details. |
27 | */ |
28 | |
29 | #include <stddef.h> |
30 | #include <string.h> |
31 | #include <stdio.h> |
32 | #include <stdlib.h> |
33 | #include <errno(*__errno_location ()).h> |
34 | #include <sys/wait.h> /* for WIFEXITED() et.al. */ |
35 | #include <unistd.h> |
36 | #include <fcntl.h> |
37 | #include <sys/utsname.h> |
38 | #include <sys/ioctl.h> |
39 | |
40 | #include <sys/stat.h> |
41 | #include <sys/socket.h> |
42 | #include <netinet/in.h> |
43 | #include <arpa/inet.h> |
44 | |
45 | #include <event2/event.h> |
46 | #include <event2/event_struct.h> |
47 | #include <event2/thread.h> |
48 | |
49 | |
50 | #include "sysdep.h" |
51 | #include "constants.h" |
52 | #include "lsw-pfkeyv2.h" /* for SADB_X_CALG_DEFLATE et.al., grrr */ |
53 | |
54 | #include "defs.h" |
55 | #include "rnd.h" |
56 | #include "id.h" |
57 | #include "connections.h" /* needs id.h */ |
58 | #include "state.h" |
59 | #include "timer.h" |
60 | #include "kernel.h" |
61 | #include "kernel_xfrm.h" |
62 | #include "packet.h" |
63 | #include "x509.h" |
64 | #include "pluto_x509.h" |
65 | #include "certs.h" |
66 | #include "secrets.h" |
67 | #include "log.h" |
68 | #include "server.h" |
69 | #include "whack.h" /* for RC_LOG_SERIOUS */ |
70 | #include "keys.h" |
71 | #include "ike_alg.h" |
72 | #include "ike_alg_encrypt.h" |
73 | #include "ike_alg_integ.h" |
74 | |
75 | #include "packet.h" /* for pb_stream in nat_traversal.h */ |
76 | #include "nat_traversal.h" |
77 | #include "ip_address.h" |
78 | #include "ip_info.h" |
79 | #include "lswfips.h" /* for libreswan_fipsmode() */ |
80 | # include "kernel_xfrm_interface.h" |
81 | #include "iface.h" |
82 | #include "ip_selector.h" |
83 | #include "ip_encap.h" |
84 | #include "show.h" |
85 | |
86 | bool_Bool can_do_IPcomp = TRUE1; /* can system actually perform IPCOMP? */ |
87 | |
88 | /* test if the routes required for two different connections agree |
89 | * It is assumed that the destination subnets agree; we are only |
90 | * testing that the interfaces and nexthops match. |
91 | */ |
92 | #define routes_agree(c, d)((c)->interface->ip_dev == (d)->interface->ip_dev && sameaddr(&(c)->spd.this.host_nexthop, & (d)->spd.this.host_nexthop)) \ |
93 | ((c)->interface->ip_dev == (d)->interface->ip_dev && \ |
94 | sameaddr(&(c)->spd.this.host_nexthop, &(d)->spd.this.host_nexthop)) |
95 | |
96 | const struct pfkey_proto_info null_proto_info[2] = { |
97 | { |
98 | .proto = IPPROTO_ESPIPPROTO_ESP, |
99 | .mode = ENCAPSULATION_MODE_TRANSPORT2, |
100 | .reqid = 0 |
101 | }, |
102 | { |
103 | .proto = 0, |
104 | .mode = 0, |
105 | .reqid = 0 |
106 | } |
107 | }; |
108 | |
109 | struct bare_shunt { |
110 | policy_prio_t policy_prio; |
111 | ip_selector our_client; |
112 | ip_selector peer_client; |
113 | ip_said said; |
114 | int transport_proto; /* XXX: same value in local/remote */ |
115 | unsigned long count; |
116 | monotime_t last_activity; |
117 | |
118 | /* |
119 | * Note: "why" must be in stable storage (not auto, not heap) |
120 | * because we use it indefinitely without copying or pfreeing. |
121 | * Simple rule: use a string literal. |
122 | */ |
123 | const char *why; |
124 | /* the connection from where it came - used to re-load /32 conns */ |
125 | char *from_cn; |
126 | |
127 | struct bare_shunt *next; |
128 | }; |
129 | |
130 | static struct bare_shunt *bare_shunts = NULL((void*)0); |
131 | |
132 | #ifdef IPSEC_CONNECTION_LIMIT |
133 | static int num_ipsec_eroute = 0; |
134 | #endif |
135 | |
136 | static void log_bare_shunt(lset_t rc_flags, const char *op, const struct bare_shunt *bs) |
137 | { |
138 | said_buf sat; |
139 | selector_buf ourb; |
140 | selector_buf peerb; |
141 | |
142 | char prio[POLICY_PRIO_BUF(3 + 1 + 3 + 1 + 10)]; |
143 | fmt_policy_prio(bs->policy_prio, prio); |
144 | |
145 | log_global(rc_flags, null_fd,{ struct logger log_ = (struct logger) { .where = (where_t) { .func = __func__, .basename = "kernel.c" , .line = 152}, .global_whackfd = ((struct fd *) ((void*)0)), .object = ((void*)0), .object_vec = &logger_global_vec, }; log_message(rc_flags, &log_ , "%s bare shunt %p %s --%d--> %s => %s %s %s", op, ( const void *)bs, str_selector(&bs->our_client, &ourb ), bs->transport_proto, str_selector(&bs->peer_client , &peerb), str_said(&bs->said, &sat), prio, bs ->why); } |
146 | "%s bare shunt %p %s --%d--> %s => %s %s %s",{ struct logger log_ = (struct logger) { .where = (where_t) { .func = __func__, .basename = "kernel.c" , .line = 152}, .global_whackfd = ((struct fd *) ((void*)0)), .object = ((void*)0), .object_vec = &logger_global_vec, }; log_message(rc_flags, &log_ , "%s bare shunt %p %s --%d--> %s => %s %s %s", op, ( const void *)bs, str_selector(&bs->our_client, &ourb ), bs->transport_proto, str_selector(&bs->peer_client , &peerb), str_said(&bs->said, &sat), prio, bs ->why); } |
147 | op, (const void *)bs,{ struct logger log_ = (struct logger) { .where = (where_t) { .func = __func__, .basename = "kernel.c" , .line = 152}, .global_whackfd = ((struct fd *) ((void*)0)), .object = ((void*)0), .object_vec = &logger_global_vec, }; log_message(rc_flags, &log_ , "%s bare shunt %p %s --%d--> %s => %s %s %s", op, ( const void *)bs, str_selector(&bs->our_client, &ourb ), bs->transport_proto, str_selector(&bs->peer_client , &peerb), str_said(&bs->said, &sat), prio, bs ->why); } |
148 | str_selector(&bs->our_client, &ourb),{ struct logger log_ = (struct logger) { .where = (where_t) { .func = __func__, .basename = "kernel.c" , .line = 152}, .global_whackfd = ((struct fd *) ((void*)0)), .object = ((void*)0), .object_vec = &logger_global_vec, }; log_message(rc_flags, &log_ , "%s bare shunt %p %s --%d--> %s => %s %s %s", op, ( const void *)bs, str_selector(&bs->our_client, &ourb ), bs->transport_proto, str_selector(&bs->peer_client , &peerb), str_said(&bs->said, &sat), prio, bs ->why); } |
149 | bs->transport_proto,{ struct logger log_ = (struct logger) { .where = (where_t) { .func = __func__, .basename = "kernel.c" , .line = 152}, .global_whackfd = ((struct fd *) ((void*)0)), .object = ((void*)0), .object_vec = &logger_global_vec, }; log_message(rc_flags, &log_ , "%s bare shunt %p %s --%d--> %s => %s %s %s", op, ( const void *)bs, str_selector(&bs->our_client, &ourb ), bs->transport_proto, str_selector(&bs->peer_client , &peerb), str_said(&bs->said, &sat), prio, bs ->why); } |
150 | str_selector(&bs->peer_client, &peerb),{ struct logger log_ = (struct logger) { .where = (where_t) { .func = __func__, .basename = "kernel.c" , .line = 152}, .global_whackfd = ((struct fd *) ((void*)0)), .object = ((void*)0), .object_vec = &logger_global_vec, }; log_message(rc_flags, &log_ , "%s bare shunt %p %s --%d--> %s => %s %s %s", op, ( const void *)bs, str_selector(&bs->our_client, &ourb ), bs->transport_proto, str_selector(&bs->peer_client , &peerb), str_said(&bs->said, &sat), prio, bs ->why); } |
151 | str_said(&bs->said, &sat),{ struct logger log_ = (struct logger) { .where = (where_t) { .func = __func__, .basename = "kernel.c" , .line = 152}, .global_whackfd = ((struct fd *) ((void*)0)), .object = ((void*)0), .object_vec = &logger_global_vec, }; log_message(rc_flags, &log_ , "%s bare shunt %p %s --%d--> %s => %s %s %s", op, ( const void *)bs, str_selector(&bs->our_client, &ourb ), bs->transport_proto, str_selector(&bs->peer_client , &peerb), str_said(&bs->said, &sat), prio, bs ->why); } |
152 | prio, bs->why){ struct logger log_ = (struct logger) { .where = (where_t) { .func = __func__, .basename = "kernel.c" , .line = 152}, .global_whackfd = ((struct fd *) ((void*)0)), .object = ((void*)0), .object_vec = &logger_global_vec, }; log_message(rc_flags, &log_ , "%s bare shunt %p %s --%d--> %s => %s %s %s", op, ( const void *)bs, str_selector(&bs->our_client, &ourb ), bs->transport_proto, str_selector(&bs->peer_client , &peerb), str_said(&bs->said, &sat), prio, bs ->why); }; |
153 | } |
154 | |
155 | static void dbg_bare_shunt(const char *op, const struct bare_shunt *bs) |
156 | { |
157 | /* same as log_bare_shunt but goes to debug log */ |
158 | if (DBGP(DBG_BASE)(cur_debugging & (((lset_t)1 << (DBG_BASE_IX))))) { |
159 | log_bare_shunt(DEBUG_STREAM, op, bs); |
160 | } |
161 | } |
162 | |
163 | /* |
164 | * Note: "why" must be in stable storage (not auto, not heap) |
165 | * because we use it indefinitely without copying or pfreeing. |
166 | * Simple rule: use a string literal. |
167 | */ |
168 | void add_bare_shunt(const ip_subnet *our_client, const ip_subnet *peer_client, |
169 | int transport_proto, ipsec_spi_t shunt_spi, |
170 | const char *why) |
171 | { |
172 | /* report any duplication; this should NOT happen */ |
173 | struct bare_shunt **bspp = bare_shunt_ptr(our_client, peer_client, transport_proto); |
174 | |
175 | if (bspp != NULL((void*)0)) { |
176 | /* maybe: passert(bsp == NULL); */ |
177 | log_bare_shunt(RC_LOG, "CONFLICTING existing", *bspp); |
178 | } |
179 | |
180 | struct bare_shunt *bs = alloc_thing(struct bare_shunt,((struct bare_shunt*) alloc_bytes(sizeof(struct bare_shunt), ( "bare shunt"))) |
181 | "bare shunt")((struct bare_shunt*) alloc_bytes(sizeof(struct bare_shunt), ( "bare shunt"))); |
182 | |
183 | bs->why = why; |
184 | bs->from_cn = NULL((void*)0); |
185 | bs->our_client = *our_client; |
186 | bs->peer_client = *peer_client; |
187 | bs->transport_proto = transport_proto; |
188 | bs->policy_prio = BOTTOM_PRIO((policy_prio_t)0); |
189 | |
190 | bs->said = said3(&subnet_type(our_client)->any_address, htonl(shunt_spi), &ip_protocol_internal); |
191 | bs->count = 0; |
192 | bs->last_activity = mononow(); |
193 | |
194 | bs->next = bare_shunts; |
195 | bare_shunts = bs; |
196 | dbg_bare_shunt("add", bs); |
197 | |
198 | /* report duplication; this should NOT happen */ |
199 | if (bspp != NULL((void*)0)) { |
200 | log_bare_shunt(RC_LOG, "CONFLICTING new", bs); |
201 | } |
202 | } |
203 | |
204 | |
205 | /* |
206 | * Note: "why" must be in stable storage (not auto, not heap) |
207 | * because we use it indefinitely without copying or pfreeing. |
208 | * Simple rule: use a string literal. |
209 | */ |
210 | |
211 | void record_and_initiate_opportunistic(const ip_selector *our_client, |
212 | const ip_selector *peer_client, |
213 | unsigned transport_proto, |
214 | struct xfrm_user_sec_ctx_ike *uctx, |
215 | const char *why) |
216 | { |
217 | passert(selector_type(our_client) == selector_type(peer_client)){ _Bool assertion__ = selector_type(our_client) == selector_type (peer_client); if (!assertion__) { lsw_passert_fail((where_t) { .func = __func__, .basename = "kernel.c" , .line = 217}, "%s" , "selector_type(our_client) == selector_type(peer_client)"); } }; |
218 | passert(selector_ipproto(our_client) == transport_proto){ _Bool assertion__ = selector_ipproto(our_client) == transport_proto ; if (!assertion__) { lsw_passert_fail((where_t) { .func = __func__ , .basename = "kernel.c" , .line = 218}, "%s", "selector_ipproto(our_client) == transport_proto" ); } }; |
219 | passert(selector_ipproto(peer_client) == transport_proto){ _Bool assertion__ = selector_ipproto(peer_client) == transport_proto ; if (!assertion__) { lsw_passert_fail((where_t) { .func = __func__ , .basename = "kernel.c" , .line = 219}, "%s", "selector_ipproto(peer_client) == transport_proto" ); } }; |
220 | /* XXX: port may or may not be zero */ |
221 | |
222 | /* |
223 | * Add the kernel shunt to the pluto bare shunt list. |
224 | * |
225 | * We need to do this because the %hold shunt was installed by |
226 | * kernel and we want to keep track of it inside pluto. |
227 | */ |
228 | |
229 | /*const*/ struct bare_shunt **bspp = bare_shunt_ptr(our_client, peer_client, |
230 | transport_proto); |
231 | if (bspp != NULL((void*)0) && |
232 | (*bspp)->said.proto == &ip_protocol_internal && |
233 | (*bspp)->said.spi == htonl(SPI_HOLD259)) { |
234 | log_global(RC_LOG_SERIOUS, null_fd, "existing bare shunt found - refusing to add a duplicate"){ struct logger log_ = (struct logger) { .where = (where_t) { .func = __func__, .basename = "kernel.c" , .line = 234}, .global_whackfd = ((struct fd *) ((void*)0)), .object = ((void*)0), .object_vec = &logger_global_vec, }; log_message(RC_LOG_SERIOUS, & log_, "existing bare shunt found - refusing to add a duplicate" ); }; |
235 | /* should we continue with initiate_ondemand() ? */ |
236 | } else { |
237 | add_bare_shunt(our_client, peer_client, transport_proto, SPI_HOLD259, why); |
238 | } |
239 | |
240 | /* XXX: missing transport_proto */ |
241 | ip_address sp = subnet_prefix(our_client); |
242 | ip_address dp = subnet_prefix(peer_client); |
243 | ip_endpoint src = endpoint(&sp, subnet_hport(our_client)); |
244 | ip_endpoint dst = endpoint(&dp, subnet_hport(peer_client)); |
245 | passert(endpoint_type(&src) == endpoint_type(&dst)){ _Bool assertion__ = endpoint_type(&src) == endpoint_type (&dst); if (!assertion__) { lsw_passert_fail((where_t) { . func = __func__, .basename = "kernel.c" , .line = 245}, "%s", "endpoint_type(&src) == endpoint_type(&dst)"); } }; /* duh */ |
246 | |
247 | /* actually initiate opportunism / ondemand */ |
248 | initiate_ondemand(&src, &dst, transport_proto, |
249 | TRUE1, null_fd((struct fd *) ((void*)0)), true1/*background*/, |
250 | uctx, "acquire"); |
251 | |
252 | if (kernel_ops->remove_orphaned_holds != NULL((void*)0)) { |
253 | dbg("record_and_initiate_opportunistic(): tell kernel to remove orphan hold for our bare shunt"){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("record_and_initiate_opportunistic(): tell kernel to remove orphan hold for our bare shunt" ); } }; |
254 | kernel_ops->remove_orphaned_holds(transport_proto, |
255 | our_client, peer_client); |
256 | } |
257 | } |
258 | |
259 | static reqid_t get_proto_reqid(reqid_t base, const struct ip_protocol *proto) |
260 | { |
261 | if (proto == &ip_protocol_comp) |
262 | return reqid_ipcomp(base); |
263 | |
264 | if (proto == &ip_protocol_esp) |
265 | return reqid_esp(base); |
266 | |
267 | if (proto == &ip_protocol_ah) |
268 | return reqid_ah(base); |
269 | |
270 | PASSERT_FAIL("bad protocol %s", proto->name)lsw_passert_fail((where_t) { .func = __func__, .basename = "kernel.c" , .line = 270}, "bad protocol %s", proto->name); |
271 | } |
272 | |
273 | /* Generate Unique SPI numbers. |
274 | * |
275 | * The specs say that the number must not be less than IPSEC_DOI_SPI_MIN. |
276 | * Pluto generates numbers not less than IPSEC_DOI_SPI_OUR_MIN, |
277 | * reserving numbers in between for manual keying (but we cannot so |
278 | * restrict numbers generated by our peer). |
279 | * XXX This should be replaced by a call to the kernel when |
280 | * XXX we get an API. |
281 | * The returned SPI is in network byte order. |
282 | * We use a random number as the initial SPI so that there is |
283 | * a good chance that different Pluto instances will choose |
284 | * different SPIs. This is good for two reasons. |
285 | * - the keying material for the initiator and responder only |
286 | * differs if the SPIs differ. |
287 | * - if Pluto is restarted, it would otherwise recycle the SPI |
288 | * numbers and confuse everything. When the kernel generates |
289 | * SPIs, this will no longer matter. |
290 | * We then allocate numbers sequentially. Thus we don't have to |
291 | * check if the number was previously used (assuming that no |
292 | * SPI lives longer than 4G of its successors). |
293 | */ |
294 | ipsec_spi_t get_ipsec_spi(ipsec_spi_t avoid, |
295 | const struct ip_protocol *proto, |
296 | const struct spd_route *sr, |
297 | bool_Bool tunnel) |
298 | { |
299 | passert(proto == &ip_protocol_ah || proto == &ip_protocol_esp){ _Bool assertion__ = proto == &ip_protocol_ah || proto == &ip_protocol_esp; if (!assertion__) { lsw_passert_fail(( where_t) { .func = __func__, .basename = "kernel.c" , .line = 299}, "%s", "proto == &ip_protocol_ah || proto == &ip_protocol_esp" ); } }; |
300 | |
301 | if (kernel_ops->get_spi != NULL((void*)0)) { |
302 | char text_said[SATOT_BUFsizeof(said_buf)]; |
303 | set_text_said(text_said, &sr->this.host_addr, 0, proto); |
304 | return kernel_ops->get_spi(&sr->that.host_addr, |
305 | &sr->this.host_addr, proto, tunnel, |
306 | get_proto_reqid(sr->reqid, proto), |
307 | IPSEC_DOI_SPI_OUR_MIN0x1000, 0xffffffff, |
308 | text_said); |
309 | } else { |
310 | static ipsec_spi_t spi = 0; /* host order, so not returned directly! */ |
311 | |
312 | spi++; |
313 | while (spi < IPSEC_DOI_SPI_OUR_MIN0x1000 || spi == ntohl(avoid)) |
314 | get_rnd_bytes((u_char *)&spi, sizeof(spi)); |
315 | |
316 | if (DBGP(DBG_BASE)(cur_debugging & (((lset_t)1 << (DBG_BASE_IX))))) { |
317 | ipsec_spi_t spi_net = htonl(spi); |
318 | DBG_dump("generate SPI:", (u_char *)&spi_net, |
319 | sizeof(spi_net)); |
320 | } |
321 | |
322 | return htonl(spi); |
323 | } |
324 | } |
325 | |
326 | /* Generate Unique CPI numbers. |
327 | * The result is returned as an SPI (4 bytes) in network order! |
328 | * The real bits are in the nework-low-order 2 bytes. |
329 | * Modelled on get_ipsec_spi, but range is more limited: |
330 | * 256-61439. |
331 | * If we can't find one easily, return 0 (a bad SPI, |
332 | * no matter what order) indicating failure. |
333 | */ |
334 | ipsec_spi_t get_my_cpi(const struct spd_route *sr, bool_Bool tunnel) |
335 | { |
336 | if (kernel_ops->get_spi != NULL((void*)0)) { |
337 | char text_said[SATOT_BUFsizeof(said_buf)]; |
338 | set_text_said(text_said, &sr->this.host_addr, 0, &ip_protocol_comp); |
339 | return kernel_ops->get_spi(&sr->that.host_addr, |
340 | &sr->this.host_addr, &ip_protocol_comp, |
341 | tunnel, |
342 | get_proto_reqid(sr->reqid, &ip_protocol_comp), |
343 | IPCOMP_FIRST_NEGOTIATED256, |
344 | IPCOMP_LAST_NEGOTIATED61439, |
345 | text_said); |
346 | } else { |
347 | static cpi_t first_busy_cpi = 0; |
348 | static cpi_t latest_cpi = 0; |
349 | |
350 | while (!(IPCOMP_FIRST_NEGOTIATED256 <= first_busy_cpi && |
351 | first_busy_cpi < IPCOMP_LAST_NEGOTIATED61439)) { |
352 | get_rnd_bytes((u_char *)&first_busy_cpi, |
353 | sizeof(first_busy_cpi)); |
354 | latest_cpi = first_busy_cpi; |
355 | } |
356 | |
357 | latest_cpi++; |
358 | |
359 | if (latest_cpi == first_busy_cpi) |
360 | find_my_cpi_gap(&latest_cpi, &first_busy_cpi); |
361 | |
362 | if (latest_cpi > IPCOMP_LAST_NEGOTIATED61439) |
363 | latest_cpi = IPCOMP_FIRST_NEGOTIATED256; |
364 | |
365 | return htonl((ipsec_spi_t)latest_cpi); |
366 | } |
367 | } |
368 | |
369 | /* |
370 | * Remove all characters but [-_.0-9a-zA-Z] from a character string. |
371 | * Truncates the result if it would be too long. |
372 | */ |
373 | |
374 | static void jam_clean_xauth_username(struct jambuf *buf, const char *src) |
375 | { |
376 | bool_Bool changed = false0; |
377 | const char *dst = jambuf_cursor(buf); |
378 | while (*src != '\0') { |
379 | if ((*src >= '0' && *src <= '9') || |
380 | (*src >= 'a' && *src <= 'z') || |
381 | (*src >= 'A' && *src <= 'Z') || |
382 | *src == '_' || *src == '-' || *src == '.') { |
383 | jam_char(buf, *src); |
384 | } else { |
385 | changed = true1; |
386 | } |
387 | src++; |
388 | } |
389 | if (changed || !jambuf_ok(buf)) { |
390 | libreswan_log("Warning: XAUTH username changed from '%s' to '%s'",loglog(RC_LOG, "Warning: XAUTH username changed from '%s' to '%s'" , src, dst) |
391 | src, dst)loglog(RC_LOG, "Warning: XAUTH username changed from '%s' to '%s'" , src, dst); |
392 | } |
393 | } |
394 | |
395 | /* |
396 | * form the command string |
397 | * |
398 | * note: this mutates *st by calling get_sa_info(). |
399 | */ |
400 | static void jam_common_shell_out(struct jambuf *buf, const struct connection *c, |
401 | const struct spd_route *sr, struct state *st, |
402 | bool_Bool inbytes, bool_Bool outbytes) |
403 | { |
404 | ip_address ta; |
405 | |
406 | char *id_vname = NULL((void*)0); |
407 | |
408 | if (c->xfrmi != NULL((void*)0) && c->xfrmi->name != NULL((void*)0)) |
409 | id_vname = c->xfrmi->name; |
410 | else |
411 | id_vname = "NULL"; |
412 | |
413 | /* change VERSION when interface spec changes */ |
414 | jam(buf, "PLUTO_VERSION='2.0' "); |
415 | jam(buf, "PLUTO_CONNECTION='%s' ", c->name); |
416 | jam(buf, "PLUTO_VIRT_INTERFACE='%s' ", id_vname); |
417 | jam(buf, "PLUTO_INTERFACE='%s' ", c->interface == NULL((void*)0) ? "NULL" : c->interface->ip_dev->id_rname); |
418 | jam(buf, "PLUTO_XFRMI_ROUTE='%s' ", (c->xfrmi != NULL((void*)0) && c->xfrmi->if_id > 0) ? "yes" : ""); |
419 | |
420 | if (address_is_specified(&sr->this.host_nexthop)) { |
421 | jam(buf, "PLUTO_NEXT_HOP='"); |
422 | jam_address(buf, &sr->this.host_nexthop); |
423 | jam(buf, "' "); |
424 | } |
425 | |
426 | ipstr_buf bme; |
427 | jam(buf, "PLUTO_ME='%s' ", ipstr(&sr->this.host_addr, &bme)); |
428 | |
429 | jam(buf, "PLUTO_MY_ID='"); |
430 | jam_id(buf, &sr->this.id, jam_meta_escaped_bytes); |
431 | jam(buf, "' "); |
432 | |
433 | jam(buf, "PLUTO_MY_CLIENT='"); |
434 | jam_subnet(buf, &sr->this.client); |
435 | jam(buf, "' "); |
436 | |
437 | jam(buf, "PLUTO_MY_CLIENT_NET='"); |
438 | ta = subnet_prefix(&sr->this.client); |
439 | jam_address(buf, &ta); |
440 | jam(buf, "' "); |
441 | |
442 | jam(buf, "PLUTO_MY_CLIENT_MASK='"); |
443 | ta = subnet_mask(&sr->this.client); |
444 | jam_address(buf, &ta); |
445 | jam(buf, "' "); |
446 | |
447 | if (subnet_is_specified(&sr->this.host_vtiip)) { |
448 | jam(buf, "VTI_IP='"); |
449 | jam_subnet(buf, &sr->this.host_vtiip); |
450 | jam(buf, "' "); |
451 | } |
452 | |
453 | if (!isanyaddr(&sr->this.ifaceip.addr)) { |
454 | jam(buf, "INTERFACE_IP='"); |
455 | jam_subnet(buf, &sr->this.ifaceip); |
456 | jam(buf, "' "); |
457 | } |
458 | |
459 | jam(buf, "PLUTO_MY_PORT='%u' ", sr->this.port); |
460 | jam(buf, "PLUTO_MY_PROTOCOL='%u' ", sr->this.protocol); |
461 | jam(buf, "PLUTO_SA_REQID='%u' ", sr->reqid); |
462 | jam(buf, "PLUTO_SA_TYPE='%s' ", (st == NULL((void*)0) ? "none" : |
463 | st->st_esp.present ? "ESP" : |
464 | st->st_ah.present ? "AH" : |
465 | st->st_ipcomp.present ? "IPCOMP" : |
466 | "unknown?")); |
467 | ipstr_buf bpeer; |
468 | jam(buf, "PLUTO_PEER='%s' ", ipstr(&sr->that.host_addr, &bpeer)); |
469 | |
470 | jam(buf, "PLUTO_PEER_ID='"); |
471 | jam_id(buf, &sr->that.id, jam_meta_escaped_bytes); |
472 | jam(buf, "' "); |
473 | |
474 | jam(buf, "PLUTO_PEER_CLIENT='"); |
475 | jam_subnet(buf, &sr->that.client); |
476 | jam(buf, "' "); |
477 | |
478 | jam(buf, "PLUTO_PEER_CLIENT_NET='"); |
479 | ta = subnet_prefix(&sr->that.client); |
480 | jam_address(buf, &ta); |
481 | jam(buf, "' "); |
482 | |
483 | jam(buf, "PLUTO_PEER_CLIENT_MASK='"); |
484 | ta = subnet_mask(&sr->that.client); |
485 | jam_address(buf, &ta); |
486 | jam(buf, "' "); |
487 | |
488 | jam(buf, "PLUTO_PEER_PORT='%u' ", sr->that.port); |
489 | jam(buf, "PLUTO_PEER_PROTOCOL='%u' ", sr->that.protocol); |
490 | |
491 | jam(buf, "PLUTO_PEER_CA='"); |
492 | for (struct pubkey_list *p = pluto_pubkeys; p != NULL((void*)0); p = p->next) { |
493 | struct pubkey *key = p->key; |
494 | int pathlen; /* value ignored */ |
495 | if (key->type == &pubkey_type_rsa && |
496 | same_id(&sr->that.id, &key->id) && |
497 | trusted_ca_nss(key->issuer, sr->that.ca, &pathlen)) { |
498 | jam_dn_or_null(buf, key->issuer, "", jam_meta_escaped_bytes); |
499 | break; |
500 | } |
501 | } |
502 | jam(buf, "' "); |
503 | |
504 | jam(buf, "PLUTO_STACK='%s' ", kernel_ops->kern_name); |
505 | |
506 | if (c->metric != 0) { |
507 | jam(buf, "PLUTO_METRIC=%d ", c->metric); |
508 | } |
509 | |
510 | if (c->connmtu != 0) { |
511 | jam(buf, "PLUTO_MTU=%d ", c->connmtu); |
512 | } |
513 | |
514 | jam(buf, "PLUTO_ADDTIME='%" PRIu64"l" "u" "' ", st == NULL((void*)0) ? (uint64_t)0 : st->st_esp.add_time); |
515 | jam(buf, "PLUTO_CONN_POLICY='%s%s' ", prettypolicy(c->policy), NEVER_NEGOTIATE(c->policy)(((((c->policy)) & (((lset_t)1 << (POLICY_ENCRYPT_IX )) | ((lset_t)1 << (POLICY_AUTHENTICATE_IX)))) == ((lset_t )0))) ? "+NEVER_NEGOTIATE" : ""); |
516 | jam(buf, "PLUTO_CONN_KIND='%s' ", enum_show(&connection_kind_names, c->kind)); |
517 | jam(buf, "PLUTO_CONN_ADDRFAMILY='ipv%d' ", address_type(&sr->this.host_addr)->ip_version); |
518 | jam(buf, "XAUTH_FAILED=%d ", (st != NULL((void*)0) && st->st_xauth_soft) ? 1 : 0); |
519 | |
520 | if (st != NULL((void*)0) && st->st_xauth_username[0] != '\0') { |
521 | jam(buf, "PLUTO_USERNAME='"); |
522 | jam_clean_xauth_username(buf, st->st_xauth_username); |
523 | jam(buf, "' "); |
524 | } |
525 | |
526 | if (address_is_specified(&sr->this.host_srcip)) { |
527 | jam(buf, "PLUTO_MY_SOURCEIP='"); |
528 | jam_address(buf, &sr->this.host_srcip); |
529 | jam(buf, "' "); |
530 | if (st != NULL((void*)0)) |
531 | jam(buf, "PLUTO_MOBIKE_EVENT='%s' ", |
532 | st->st_mobike_del_src_ip ? "yes" : ""); |
533 | } |
534 | |
535 | jam(buf, "PLUTO_IS_PEER_CISCO='%u' ", c->remotepeertype /* ??? kind of odd printing an enum with %u */); |
536 | jam(buf, "PLUTO_PEER_DNS_INFO='%s' ", (st != NULL((void*)0) && st->st_seen_cfg_dns != NULL((void*)0)) ? st->st_seen_cfg_dns : ""); |
537 | jam(buf, "PLUTO_PEER_DOMAIN_INFO='%s' ", (st != NULL((void*)0) && st->st_seen_cfg_domains != NULL((void*)0)) ? st->st_seen_cfg_domains : ""); |
538 | jam(buf, "PLUTO_PEER_BANNER='%s' ", (st != NULL((void*)0) && st->st_seen_cfg_banner != NULL((void*)0)) ? st->st_seen_cfg_banner : ""); |
539 | jam(buf, "PLUTO_CFG_SERVER='%u' ", sr->this.modecfg_server); |
540 | jam(buf, "PLUTO_CFG_CLIENT='%u' ", sr->this.modecfg_client); |
541 | #ifdef HAVE_NM1 |
542 | jam(buf, "PLUTO_NM_CONFIGURED='%u' ", c->nmconfigured); |
543 | #endif |
544 | |
545 | if (inbytes) { |
546 | jam(buf, "PLUTO_INBYTES='%" PRIu64"l" "u" "' ", |
547 | st->st_esp.present ? st->st_esp.our_bytes : |
548 | st->st_ah.present ? st->st_ah.our_bytes : |
549 | st->st_ipcomp.present ? st->st_ipcomp.our_bytes : |
550 | 0); |
551 | } |
552 | if (outbytes) { |
553 | jam(buf, "PLUTO_OUTBYTES='%" PRIu64"l" "u" "' ", |
554 | st->st_esp.present ? st->st_esp.peer_bytes : |
555 | st->st_ah.present ? st->st_ah.peer_bytes : |
556 | st->st_ipcomp.present ? st->st_ipcomp.peer_bytes : |
557 | 0); |
558 | } |
559 | |
560 | if (c->nflog_group != 0) { |
561 | jam(buf, "NFLOG=%d ", c->nflog_group); |
562 | } |
563 | |
564 | if (c->sa_marks.in.val != 0) { |
565 | jam(buf, "CONNMARK_IN=%" PRIu32"u" "/%#08" PRIx32"x" " ", |
566 | c->sa_marks.in.val, c->sa_marks.in.mask); |
567 | } |
568 | if (c->sa_marks.out.val != 0) { |
569 | jam(buf, "CONNMARK_OUT=%" PRIu32"u" "/%#08" PRIx32"x" " ", |
570 | c->sa_marks.out.val, c->sa_marks.out.mask); |
571 | } |
572 | if (c->xfrmi != NULL((void*)0) && c->xfrmi->if_id > 0) { |
573 | if (addrinsubnet(&sr->that.host_addr, &sr->that.client)) { |
574 | jam(buf, "PLUTO_XFRMI_FWMARK='%" PRIu32"u" "/0xffffffff' ", |
575 | c->xfrmi->if_id); |
576 | } else { |
577 | address_buf bpeer; |
578 | subnet_buf peerclient_str; |
579 | dbg("not adding PLUTO_XFRMI_FWMARK. PLUTO_PEER=%s is not inside PLUTO_PEER_CLIENT=%s",{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("not adding PLUTO_XFRMI_FWMARK. PLUTO_PEER=%s is not inside PLUTO_PEER_CLIENT=%s" , str_address(&sr->that.host_addr, &bpeer), str_subnet (&sr->that.client, &peerclient_str)); } } |
580 | str_address(&sr->that.host_addr, &bpeer),{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("not adding PLUTO_XFRMI_FWMARK. PLUTO_PEER=%s is not inside PLUTO_PEER_CLIENT=%s" , str_address(&sr->that.host_addr, &bpeer), str_subnet (&sr->that.client, &peerclient_str)); } } |
581 | str_subnet(&sr->that.client, &peerclient_str)){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("not adding PLUTO_XFRMI_FWMARK. PLUTO_PEER=%s is not inside PLUTO_PEER_CLIENT=%s" , str_address(&sr->that.host_addr, &bpeer), str_subnet (&sr->that.client, &peerclient_str)); } }; |
582 | jam(buf, "PLUTO_XFRMI_FWMARK='' "); |
583 | } |
584 | } |
585 | jam(buf, "VTI_IFACE='%s' ", c->vti_iface ? c->vti_iface : ""); |
586 | jam(buf, "VTI_ROUTING='%s' ", bool_str(c->vti_routing)); |
587 | jam(buf, "VTI_SHARED='%s' ", bool_str(c->vti_shared)); |
588 | |
589 | if (sr->this.has_cat) { |
590 | jam(buf, "CAT='YES' "); |
591 | } |
592 | |
593 | jam(buf, "SPI_IN=0x%x SPI_OUT=0x%x " /* SPI_IN SPI_OUT */, |
594 | (st == NULL((void*)0) ? 0 : st->st_esp.present ? ntohl(st->st_esp.attrs.spi) : |
595 | st->st_ah.present ? ntohl(st->st_ah.attrs.spi) : |
596 | st->st_ipcomp.present ? ntohl(st->st_ipcomp.attrs.spi) : 0), |
597 | (st == NULL((void*)0) ? 0 : st->st_esp.present ? ntohl(st->st_esp.our_spi) : |
598 | st->st_ah.present ? ntohl(st->st_ah.our_spi) : |
599 | st->st_ipcomp.present ? ntohl(st->st_ipcomp.our_spi) : 0)); |
600 | } |
601 | |
602 | /* |
603 | * form the command string |
604 | * |
605 | * note: this mutates *st by calling fmt_traffic_str |
606 | */ |
607 | bool_Bool fmt_common_shell_out(char *buf, size_t blen, const struct connection *c, |
608 | const struct spd_route *sr, struct state *st) |
609 | { |
610 | /* |
611 | * note: this mutates *st by calling get_sa_info |
612 | * |
613 | * XXX: does the get_sa_info() call order matter? Should this |
614 | * be a single "atomic" call? |
615 | * |
616 | * true==inbound: inbound updates OUR_BYTES; !inbound updates |
617 | * PEER_BYTES. |
618 | */ |
619 | bool_Bool outbytes = st != NULL((void*)0) && get_sa_info(st, false0, NULL((void*)0)); |
620 | bool_Bool inbytes = st != NULL((void*)0) && get_sa_info(st, true1, NULL((void*)0)); |
621 | struct jambuf jambuf = array_as_jambuf(buf, blen); |
622 | jam_common_shell_out(&jambuf, c, sr, st, inbytes, outbytes); |
623 | return jambuf_ok(&jambuf); |
624 | } |
625 | |
626 | bool_Bool do_command(const struct connection *c, |
627 | const struct spd_route *sr, |
628 | const char *verb, |
629 | struct state *st) |
630 | { |
631 | const char *verb_suffix; |
632 | |
633 | /* |
634 | * Support for skipping updown, eg leftupdown="" |
635 | * Useful on busy servers that do not need to use updown for anything |
636 | */ |
637 | if (sr->this.updown == NULL((void*)0) || streq(sr->this.updown, "%disabled")(strcmp((sr->this.updown), ("%disabled")) == 0)) { |
638 | dbg("skipped updown %s command - disabled per policy", verb){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("skipped updown %s command - disabled per policy" , verb); } }; |
639 | return TRUE1; |
640 | } |
641 | dbg("running updown command \"%s\" for verb %s ", sr->this.updown, verb){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("running updown command \"%s\" for verb %s ", sr ->this.updown, verb); } }; |
642 | |
643 | /* |
644 | * Figure out which verb suffix applies. |
645 | * NOTE: this is a duplicate of code in mast_do_command_vs. |
646 | */ |
647 | { |
648 | const char *hs, *cs; |
649 | |
650 | switch (addrtypeof(&sr->this.host_addr)) { |
651 | case AF_INET2: |
652 | hs = "-host"; |
653 | cs = "-client"; |
654 | break; |
655 | case AF_INET610: |
656 | hs = "-host-v6"; |
657 | cs = "-client-v6"; |
658 | break; |
659 | default: |
660 | loglog(RC_LOG_SERIOUS, "unknown address family"); |
661 | return FALSE0; |
662 | } |
663 | verb_suffix = subnetisaddr(&sr->this.client,(subnetishost(&sr->this.client) && addrinsubnet ((&sr->this.host_addr), (&sr->this.client))) |
664 | &sr->this.host_addr)(subnetishost(&sr->this.client) && addrinsubnet ((&sr->this.host_addr), (&sr->this.client))) ? |
665 | hs : cs; |
666 | } |
667 | |
668 | dbg("command executing %s%s", verb, verb_suffix){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("command executing %s%s", verb, verb_suffix); } }; |
669 | |
670 | if (kernel_ops->docommand == NULL((void*)0)) { |
671 | dbg("no do_command for method %s", kernel_ops->kern_name){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("no do_command for method %s", kernel_ops-> kern_name); } }; |
672 | } else { |
673 | return (*kernel_ops->docommand)(c, sr, verb, verb_suffix, st); |
674 | } |
675 | return TRUE1; |
676 | } |
677 | |
678 | bool_Bool invoke_command(const char *verb, const char *verb_suffix, const char *cmd) |
679 | { |
680 | # define CHUNK_WIDTH 80 /* units for cmd logging */ |
681 | if (DBGP(DBG_BASE)(cur_debugging & (((lset_t)1 << (DBG_BASE_IX))))) { |
682 | int slen = strlen(cmd); |
683 | int i; |
684 | |
685 | DBG_log("executing %s%s: %s", |
686 | verb, verb_suffix, cmd); |
687 | DBG_log("popen cmd is %d chars long", slen); |
688 | for (i = 0; i < slen; i += CHUNK_WIDTH) |
689 | DBG_log("cmd(%4d):%.*s:", i, |
690 | slen-i < CHUNK_WIDTH? slen-i : CHUNK_WIDTH, |
691 | &cmd[i]); |
692 | } |
693 | # undef CHUNK_WIDTH |
694 | |
695 | |
696 | { |
697 | /* |
698 | * invoke the script, catching stderr and stdout |
699 | * It may be of concern that some file descriptors will |
700 | * be inherited. For the ones under our control, we |
701 | * have done fcntl(fd, F_SETFD, FD_CLOEXEC) to prevent this. |
702 | * Any used by library routines (perhaps the resolver or |
703 | * syslog) will remain. |
704 | */ |
705 | FILE *f = popen(cmd, "r"); |
706 | |
707 | if (f == NULL((void*)0)) { |
708 | #ifdef HAVE_BROKEN_POPEN |
709 | /* |
710 | * See bug #1067 Angstrom Linux on a arm7 has no |
711 | * popen() |
712 | */ |
713 | if (errno(*__errno_location ()) == ENOSYS38) { |
714 | /* |
715 | * Try system(), though it will not give us |
716 | * output |
717 | */ |
718 | DBG_log("unable to popen(), falling back to system()"); |
719 | system(cmd); |
720 | return TRUE1; |
721 | } |
722 | #endif |
723 | loglog(RC_LOG_SERIOUS, "unable to popen %s%s command", |
724 | verb, verb_suffix); |
725 | return FALSE0; |
726 | } |
727 | |
728 | /* log any output */ |
729 | for (;; ) { |
730 | /* |
731 | * if response doesn't fit in this buffer, it will |
732 | * be folded |
733 | */ |
734 | char resp[256]; |
735 | |
736 | if (fgets(resp, sizeof(resp), f) == NULL((void*)0)) { |
737 | if (ferror(f)) { |
738 | LOG_ERRNO(errno, "fgets failed on output of %s%s command",{ int e_ = (*__errno_location ()); for (char lswbuf[((size_t) 1024)], *lswbuf_ = lswbuf; lswbuf_ != ((void*)0); lswbuf_ = ( (void*)0)) for (struct jambuf jambuf = array_as_jambuf((lswbuf ), sizeof(lswbuf)), *buf = &jambuf; buf != ((void*)0); buf = ((void*)0)) { jam(buf, "ERROR: "); jam_cur_prefix(buf); jam (buf, "fgets failed on output of %s%s command", verb, verb_suffix ); jam_string(buf, "."); jam(buf, " ""Errno %d: %s", (e_), strerror (e_)); jambuf_to_error_stream(buf); } } |
739 | verb, verb_suffix){ int e_ = (*__errno_location ()); for (char lswbuf[((size_t) 1024)], *lswbuf_ = lswbuf; lswbuf_ != ((void*)0); lswbuf_ = ( (void*)0)) for (struct jambuf jambuf = array_as_jambuf((lswbuf ), sizeof(lswbuf)), *buf = &jambuf; buf != ((void*)0); buf = ((void*)0)) { jam(buf, "ERROR: "); jam_cur_prefix(buf); jam (buf, "fgets failed on output of %s%s command", verb, verb_suffix ); jam_string(buf, "."); jam(buf, " ""Errno %d: %s", (e_), strerror (e_)); jambuf_to_error_stream(buf); } }; |
740 | pclose(f); |
741 | return FALSE0; |
742 | } else { |
743 | passert(feof(f)){ _Bool assertion__ = feof(f); if (!assertion__) { lsw_passert_fail ((where_t) { .func = __func__, .basename = "kernel.c" , .line = 743}, "%s", "feof(f)"); } }; |
744 | break; |
745 | } |
746 | } else { |
747 | char *e = resp + strlen(resp); |
748 | |
749 | if (e > resp && e[-1] == '\n') |
750 | e[-1] = '\0'; /* trim trailing '\n' */ |
751 | libreswan_log("%s%s output: %s", verb,loglog(RC_LOG, "%s%s output: %s", verb, verb_suffix, resp) |
752 | verb_suffix, resp)loglog(RC_LOG, "%s%s output: %s", verb, verb_suffix, resp); |
753 | } |
754 | } |
755 | |
756 | /* report on and react to return code */ |
757 | { |
758 | int r = pclose(f); |
759 | |
760 | if (r == -1) { |
761 | LOG_ERRNO(errno, "pclose failed for %s%s command",{ int e_ = (*__errno_location ()); for (char lswbuf[((size_t) 1024)], *lswbuf_ = lswbuf; lswbuf_ != ((void*)0); lswbuf_ = ( (void*)0)) for (struct jambuf jambuf = array_as_jambuf((lswbuf ), sizeof(lswbuf)), *buf = &jambuf; buf != ((void*)0); buf = ((void*)0)) { jam(buf, "ERROR: "); jam_cur_prefix(buf); jam (buf, "pclose failed for %s%s command", verb, verb_suffix); jam_string (buf, "."); jam(buf, " ""Errno %d: %s", (e_), strerror(e_)); jambuf_to_error_stream (buf); } } |
762 | verb, verb_suffix){ int e_ = (*__errno_location ()); for (char lswbuf[((size_t) 1024)], *lswbuf_ = lswbuf; lswbuf_ != ((void*)0); lswbuf_ = ( (void*)0)) for (struct jambuf jambuf = array_as_jambuf((lswbuf ), sizeof(lswbuf)), *buf = &jambuf; buf != ((void*)0); buf = ((void*)0)) { jam(buf, "ERROR: "); jam_cur_prefix(buf); jam (buf, "pclose failed for %s%s command", verb, verb_suffix); jam_string (buf, "."); jam(buf, " ""Errno %d: %s", (e_), strerror(e_)); jambuf_to_error_stream (buf); } }; |
763 | return FALSE0; |
764 | } else if (WIFEXITED(r)(((r) & 0x7f) == 0)) { |
765 | if (WEXITSTATUS(r)(((r) & 0xff00) >> 8) != 0) { |
766 | loglog(RC_LOG_SERIOUS, |
767 | "%s%s command exited with status %d", |
768 | verb, verb_suffix, |
769 | WEXITSTATUS(r)(((r) & 0xff00) >> 8)); |
770 | return FALSE0; |
771 | } |
772 | } else if (WIFSIGNALED(r)(((signed char) (((r) & 0x7f) + 1) >> 1) > 0)) { |
773 | loglog(RC_LOG_SERIOUS, |
774 | "%s%s command exited with signal %d", |
775 | verb, verb_suffix, WTERMSIG(r)((r) & 0x7f)); |
776 | return FALSE0; |
777 | } else { |
778 | loglog(RC_LOG_SERIOUS, |
779 | "%s%s command exited with unknown status %d", |
780 | verb, verb_suffix, r); |
781 | return FALSE0; |
782 | } |
783 | } |
784 | } |
785 | return TRUE1; |
786 | } |
787 | |
788 | /* Check that we can route (and eroute). Diagnose if we cannot. */ |
789 | |
790 | enum routability { |
791 | route_impossible, |
792 | route_easy, |
793 | route_nearconflict, |
794 | route_farconflict, |
795 | route_unnecessary |
796 | }; |
797 | |
798 | /* |
799 | * handle co-terminal attempt of the "near" kind |
800 | * |
801 | * Note: it mutates both inside and outside |
802 | */ |
803 | static enum routability note_nearconflict( |
804 | struct connection *outside, /* CK_PERMANENT */ |
805 | struct connection *inside) /* CK_TEMPLATE */ |
806 | { |
807 | char inst[CONN_INST_BUF(2 + 10 + 1 + sizeof(subnet_buf) + 7 + sizeof(address_reversed_buf ) + 3 + sizeof(subnet_buf) + 1 + 1)]; |
808 | |
809 | /* |
810 | * this is a co-terminal attempt of the "near" kind. |
811 | * when chaining, we chain from inside to outside |
812 | * |
813 | * XXX permit multiple deep connections? |
814 | */ |
815 | passert(inside->policy_next == NULL){ _Bool assertion__ = inside->policy_next == ((void*)0); if (!assertion__) { lsw_passert_fail((where_t) { .func = __func__ , .basename = "kernel.c" , .line = 815}, "%s", "inside->policy_next == NULL" ); } }; |
816 | |
817 | inside->policy_next = outside; |
818 | |
819 | /* |
820 | * since we are going to steal the eroute from the secondary |
821 | * policy, we need to make sure that it no longer thinks that |
822 | * it owns the eroute. |
823 | */ |
824 | outside->spd.eroute_owner = SOS_NOBODY0; |
825 | outside->spd.routing = RT_UNROUTED_KEYED; |
826 | |
827 | /* |
828 | * set the priority of the new eroute owner to be higher |
829 | * than that of the current eroute owner |
830 | */ |
831 | inside->prio = outside->prio + 1; |
832 | |
833 | loglog(RC_LOG_SERIOUS, |
834 | "conflict on eroute (%s), switching eroute to %s and linking %s", |
835 | fmt_conn_instance(inside, inst), |
836 | inside->name, outside->name); |
837 | |
838 | return route_nearconflict; |
839 | } |
840 | |
841 | /* |
842 | * Note: this may mutate c |
843 | */ |
844 | static enum routability could_route(struct connection *c, struct logger *logger) |
845 | { |
846 | dbg("could_route called for %s; kind=%s that.has_client=%s oppo=%s this.host_port=%u",{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("could_route called for %s; kind=%s that.has_client=%s oppo=%s this.host_port=%u" , c->name, enum_show(&connection_kind_names, c->kind ), bool_str(c->spd.that.has_client), bool_str(c->policy & ((lset_t)1 << (POLICY_OPPORTUNISTIC_IX))), c-> spd.this.host_port); } } |
847 | c->name,{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("could_route called for %s; kind=%s that.has_client=%s oppo=%s this.host_port=%u" , c->name, enum_show(&connection_kind_names, c->kind ), bool_str(c->spd.that.has_client), bool_str(c->policy & ((lset_t)1 << (POLICY_OPPORTUNISTIC_IX))), c-> spd.this.host_port); } } |
848 | enum_show(&connection_kind_names, c->kind),{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("could_route called for %s; kind=%s that.has_client=%s oppo=%s this.host_port=%u" , c->name, enum_show(&connection_kind_names, c->kind ), bool_str(c->spd.that.has_client), bool_str(c->policy & ((lset_t)1 << (POLICY_OPPORTUNISTIC_IX))), c-> spd.this.host_port); } } |
849 | bool_str(c->spd.that.has_client),{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("could_route called for %s; kind=%s that.has_client=%s oppo=%s this.host_port=%u" , c->name, enum_show(&connection_kind_names, c->kind ), bool_str(c->spd.that.has_client), bool_str(c->policy & ((lset_t)1 << (POLICY_OPPORTUNISTIC_IX))), c-> spd.this.host_port); } } |
850 | bool_str(c->policy & POLICY_OPPORTUNISTIC),{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("could_route called for %s; kind=%s that.has_client=%s oppo=%s this.host_port=%u" , c->name, enum_show(&connection_kind_names, c->kind ), bool_str(c->spd.that.has_client), bool_str(c->policy & ((lset_t)1 << (POLICY_OPPORTUNISTIC_IX))), c-> spd.this.host_port); } } |
851 | c->spd.this.host_port){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("could_route called for %s; kind=%s that.has_client=%s oppo=%s this.host_port=%u" , c->name, enum_show(&connection_kind_names, c->kind ), bool_str(c->spd.that.has_client), bool_str(c->policy & ((lset_t)1 << (POLICY_OPPORTUNISTIC_IX))), c-> spd.this.host_port); } }; |
852 | |
853 | /* it makes no sense to route a connection that is ISAKMP-only */ |
854 | if (!NEVER_NEGOTIATE(c->policy)(((((c->policy)) & (((lset_t)1 << (POLICY_ENCRYPT_IX )) | ((lset_t)1 << (POLICY_AUTHENTICATE_IX)))) == ((lset_t )0))) && !HAS_IPSEC_POLICY(c->policy)(((c->policy) & (((lset_t)1 << (POLICY_NOPMTUDISC_IX )) - ((lset_t)1 << (POLICY_ENCRYPT_IX)) + ((lset_t)1 << (POLICY_NOPMTUDISC_IX)))) != 0)) { |
855 | log_message(RC_ROUTE, logger, |
856 | "cannot route an ISAKMP-only connection"); |
857 | return route_impossible; |
858 | } |
859 | |
860 | /* |
861 | * if this is a transport SA, and overlapping SAs are supported, then |
862 | * this route is not necessary at all. |
863 | */ |
864 | if (kernel_ops->overlap_supported && !LIN(POLICY_TUNNEL, c->policy)(((((lset_t)1 << (POLICY_TUNNEL_IX))) & (c->policy )) == (((lset_t)1 << (POLICY_TUNNEL_IX))))) |
865 | return route_unnecessary; |
866 | |
867 | /* |
868 | * if this is a Road Warrior template, we cannot route. |
869 | * Opportunistic template is OK. |
870 | */ |
871 | if (!c->spd.that.has_client && |
872 | c->kind == CK_TEMPLATE && |
873 | !(c->policy & POLICY_OPPORTUNISTIC((lset_t)1 << (POLICY_OPPORTUNISTIC_IX)))) { |
874 | log_message(RC_ROUTE, logger, |
875 | "cannot route template policy of %s", |
876 | prettypolicy(c->policy)); |
877 | return route_impossible; |
878 | } |
879 | |
880 | /* if routing would affect IKE messages, reject */ |
881 | if (c->spd.this.host_port != NAT_IKE_UDP_PORT4500 && |
882 | c->spd.this.host_port != IKE_UDP_PORT500 && |
883 | addrinsubnet(&c->spd.that.host_addr, &c->spd.that.client)) { |
884 | log_message(RC_LOG_SERIOUS, logger, |
885 | "cannot install route: peer is within its client"); |
886 | return route_impossible; |
887 | } |
888 | |
889 | struct spd_route *esr, *rosr; |
890 | struct connection *ero, /* who, if anyone, owns our eroute? */ |
891 | *ro = route_owner(c, &c->spd, &rosr, &ero, &esr); /* who owns our route? */ |
892 | |
893 | /* |
894 | * If there is already a route for peer's client subnet |
895 | * and it disagrees about interface or nexthop, we cannot steal it. |
896 | * Note: if this connection is already routed (perhaps for another |
897 | * state object), the route will agree. |
898 | * This is as it should be -- it will arise during rekeying. |
899 | */ |
900 | if (ro != NULL((void*)0) && !routes_agree(ro, c)((ro)->interface->ip_dev == (c)->interface->ip_dev && sameaddr(&(ro)->spd.this.host_nexthop, & (c)->spd.this.host_nexthop))) { |
901 | |
902 | if (!compatible_overlapping_connections(c, ero)) { |
903 | /* |
904 | * Another connection is already using the eroute. |
905 | * TODO: XFRM can do this? For now excempt OE only |
906 | */ |
907 | if ((c->policy & POLICY_OPPORTUNISTIC((lset_t)1 << (POLICY_OPPORTUNISTIC_IX))) == LEMPTY((lset_t)0)) { |
908 | connection_buf cib; |
909 | log_message(RC_LOG_SERIOUS, logger, |
910 | "cannot route -- route already in use for "PRI_CONNECTION"\"%s\"%s""", |
911 | pri_connection(ro, &cib)(ro)->name, str_connection_instance(ro, &cib)); |
912 | return route_impossible; |
913 | } else { |
914 | connection_buf cib; |
915 | log_message(RC_LOG_SERIOUS, logger, |
916 | "cannot route -- route already in use for "PRI_CONNECTION"\"%s\"%s"" - but allowing anyway", |
917 | pri_connection(ro, &cib)(ro)->name, str_connection_instance(ro, &cib)); |
918 | } |
919 | } |
920 | } |
921 | |
922 | |
923 | /* if there is an eroute for another connection, there is a problem */ |
924 | if (ero != NULL((void*)0) && ero != c) { |
925 | /* |
926 | * note, wavesec (PERMANENT) goes *outside* and |
927 | * OE goes *inside* (TEMPLATE) |
928 | */ |
929 | if (ero->kind == CK_PERMANENT && |
930 | c->kind == CK_TEMPLATE) { |
931 | return note_nearconflict(ero, c); |
932 | } else if (c->kind == CK_PERMANENT && |
933 | ero->kind == CK_TEMPLATE) { |
934 | return note_nearconflict(c, ero); |
935 | } |
936 | |
937 | /* look along the chain of policies for one with the same name */ |
938 | |
939 | for (struct connection *ep = ero; ep != NULL((void*)0); ep = ero->policy_next) { |
940 | if (ep->kind == CK_TEMPLATE && |
941 | streq(ep->name, c->name)(strcmp((ep->name), (c->name)) == 0)) |
942 | return route_easy; |
943 | } |
944 | |
945 | /* |
946 | * If we fell off the end of the list, then we found no |
947 | * TEMPLATE so there must be a conflict that we can't resolve. |
948 | * As the names are not equal, then we aren't |
949 | * replacing/rekeying. |
950 | * |
951 | * ??? should there not be a conflict if ANYTHING in the list, |
952 | * other than c, conflicts with c? |
953 | */ |
954 | |
955 | if (LDISJOINT(POLICY_OVERLAPIP, c->policy | ero->policy)(((((lset_t)1 << (POLICY_OVERLAPIP_IX))) & (c->policy | ero->policy)) == ((lset_t)0))) { |
956 | /* |
957 | * another connection is already using the eroute, |
958 | * TODO: XFRM apparently can do this though |
959 | */ |
960 | connection_buf erob; |
961 | log_message(RC_LOG_SERIOUS, logger, |
962 | "cannot install eroute -- it is in use for "PRI_CONNECTION"\"%s\"%s"" #%lu", |
963 | pri_connection(ero, &erob)(ero)->name, str_connection_instance(ero, &erob), esr->eroute_owner); |
964 | return route_impossible; |
965 | } |
966 | |
967 | connection_buf erob; |
968 | dbg("overlapping permitted with "PRI_CONNECTION" #%lu",{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("overlapping permitted with ""\"%s\"%s"" #%lu" , (ero)->name, str_connection_instance(ero, &erob), esr ->eroute_owner); } } |
969 | pri_connection(ero, &erob), esr->eroute_owner){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("overlapping permitted with ""\"%s\"%s"" #%lu" , (ero)->name, str_connection_instance(ero, &erob), esr ->eroute_owner); } }; |
970 | } |
971 | return route_easy; |
972 | } |
973 | |
974 | bool_Bool trap_connection(struct connection *c, struct fd *whackfd) |
975 | { |
976 | struct logger logger = CONNECTION_LOGGER(c, whackfd)(struct logger) { .where = (where_t) { .func = __func__, .basename = "kernel.c" , .line = 976}, .global_whackfd = whackfd, .object = c, .object_vec = &logger_connection_vec, }; |
977 | enum routability r = could_route(c, &logger); |
978 | |
979 | switch (r) { |
980 | case route_impossible: |
981 | return FALSE0; |
982 | |
983 | case route_easy: |
984 | case route_nearconflict: |
985 | /* |
986 | * RT_ROUTED_TUNNEL is treated specially: we don't override |
987 | * because we don't want to lose track of the IPSEC_SAs etc. |
988 | * ??? The test treats RT_UNROUTED_KEYED specially too. |
989 | */ |
990 | if (c->spd.routing < RT_ROUTED_TUNNEL) |
991 | return route_and_eroute(c, &c->spd, NULL((void*)0)); |
992 | |
993 | return TRUE1; |
994 | |
995 | case route_farconflict: |
996 | return FALSE0; |
997 | |
998 | case route_unnecessary: |
999 | return TRUE1; |
1000 | default: |
1001 | bad_case(r)libreswan_bad_case("r", (r), (where_t) { .func = __func__, .basename = "kernel.c" , .line = 1001}); |
1002 | } |
1003 | } |
1004 | |
1005 | /* |
1006 | * Add/replace/delete a shunt eroute. |
1007 | * |
1008 | * Such an eroute determines the fate of packets without the use |
1009 | * of any SAs. These are defaults, in effect. |
1010 | * If a negotiation has not been attempted, use %trap. |
1011 | * If negotiation has failed, the choice between %trap/%pass/%drop/%reject |
1012 | * is specified in the policy of connection c. |
1013 | */ |
1014 | static bool_Bool shunt_eroute(const struct connection *c, |
1015 | const struct spd_route *sr, |
1016 | enum routing_t rt_kind, |
1017 | enum pluto_sadb_operations op, |
1018 | const char *opname) |
1019 | { |
1020 | if (DBGP(DBG_BASE)(cur_debugging & (((lset_t)1 << (DBG_BASE_IX))))) { |
1021 | selector_buf thisb, thatb; |
1022 | DBG_log("shunt_eroute() called for connection '%s' to '%s' for rt_kind '%s' using protoports %s --%d->- %s", |
1023 | c->name, opname, enum_name(&routing_story, rt_kind), |
1024 | str_selector(&sr->this.client, &thisb), |
1025 | sr->this.protocol, |
1026 | str_selector(&sr->that.client, &thatb)); |
1027 | } |
1028 | |
1029 | if (kernel_ops->shunt_eroute != NULL((void*)0)) { |
1030 | return kernel_ops->shunt_eroute(c, sr, rt_kind, op, opname); |
1031 | } |
1032 | |
1033 | loglog(RC_COMMENT, "no shunt_eroute implemented for %s interface", |
1034 | kernel_ops->kern_name); |
1035 | return TRUE1; |
1036 | } |
1037 | |
1038 | static bool_Bool sag_eroute(const struct state *st, |
1039 | const struct spd_route *sr, |
1040 | enum pluto_sadb_operations op, |
1041 | const char *opname) |
1042 | { |
1043 | pexpect(kernel_ops->sag_eroute != NULL)({ _Bool assertion__ = kernel_ops->sag_eroute != ((void*)0 ); if (!assertion__) { log_pexpect((where_t) { .func = __func__ , .basename = "kernel.c" , .line = 1043}, "%s", "kernel_ops->sag_eroute != NULL" ); } assertion__; }); |
1044 | if (kernel_ops->sag_eroute != NULL((void*)0)) |
1045 | return kernel_ops->sag_eroute(st, sr, op, opname); |
1046 | |
1047 | return FALSE0; |
1048 | } |
1049 | |
1050 | void migration_up(struct connection *c, struct state *st) |
1051 | { |
1052 | for (struct spd_route *sr = &c->spd; sr != NULL((void*)0); sr = sr->spd_next) { |
1053 | #ifdef IPSEC_CONNECTION_LIMIT |
1054 | num_ipsec_eroute++; |
1055 | #endif |
1056 | sr->routing = RT_ROUTED_TUNNEL; /* do now so route_owner won't find us */ |
1057 | (void) do_command(c, sr, "up", st); |
1058 | (void) do_command(c, sr, "route", st); |
1059 | } |
1060 | } |
1061 | |
1062 | void migration_down(struct connection *c, struct state *st) |
1063 | { |
1064 | for (struct spd_route *sr = &c->spd; sr != NULL((void*)0); sr = sr->spd_next) { |
1065 | enum routing_t cr = sr->routing; |
1066 | |
1067 | #ifdef IPSEC_CONNECTION_LIMIT |
1068 | if (erouted(cr)((cr) != RT_UNROUTED)) |
1069 | num_ipsec_eroute--; |
1070 | #endif |
1071 | |
1072 | sr->routing = RT_UNROUTED; /* do now so route_owner won't find us */ |
1073 | |
1074 | /* only unroute if no other connection shares it */ |
1075 | if (routed(cr)((cr) > RT_UNROUTED_HOLD) && route_owner(c, sr, NULL((void*)0), NULL((void*)0), NULL((void*)0)) == NULL((void*)0)) { |
1076 | (void) do_command(c, sr, "down", st); |
1077 | st->st_mobike_del_src_ip = true1; |
1078 | (void) do_command(c, sr, "unroute", st); |
1079 | st->st_mobike_del_src_ip = false0; |
1080 | } |
1081 | } |
1082 | } |
1083 | |
1084 | |
1085 | /* delete any eroute for a connection and unroute it if route isn't shared */ |
1086 | void unroute_connection(struct connection *c) |
1087 | { |
1088 | for (struct spd_route *sr = &c->spd; sr != NULL((void*)0); sr = sr->spd_next) { |
1089 | enum routing_t cr = sr->routing; |
1090 | |
1091 | if (erouted(cr)((cr) != RT_UNROUTED)) { |
1092 | /* cannot handle a live one */ |
1093 | passert(cr != RT_ROUTED_TUNNEL){ _Bool assertion__ = cr != RT_ROUTED_TUNNEL; if (!assertion__ ) { lsw_passert_fail((where_t) { .func = __func__, .basename = "kernel.c" , .line = 1093}, "%s", "cr != RT_ROUTED_TUNNEL"); } }; |
1094 | shunt_eroute(c, sr, RT_UNROUTED, ERO_DELETE, "delete"); |
1095 | #ifdef IPSEC_CONNECTION_LIMIT |
1096 | num_ipsec_eroute--; |
1097 | #endif |
1098 | } |
1099 | |
1100 | sr->routing = RT_UNROUTED; /* do now so route_owner won't find us */ |
1101 | |
1102 | /* only unroute if no other connection shares it */ |
1103 | if (routed(cr)((cr) > RT_UNROUTED_HOLD) && route_owner(c, sr, NULL((void*)0), NULL((void*)0), NULL((void*)0)) == NULL((void*)0)) |
1104 | (void) do_command(c, sr, "unroute", NULL((void*)0)); |
1105 | } |
1106 | } |
1107 | |
1108 | #include "kernel_alg.h" |
1109 | |
1110 | void set_text_said(char *text_said, const ip_address *dst, |
1111 | ipsec_spi_t spi, const struct ip_protocol *sa_proto) |
1112 | { |
1113 | ip_said said = said3(dst, spi, sa_proto); |
1114 | struct jambuf jam = array_as_jambuf(text_said, SATOT_BUFsizeof(said_buf)); |
1115 | jam_said(&jam, &said); |
1116 | } |
1117 | |
1118 | /* find an entry in the bare_shunt table. |
1119 | * Trick: return a pointer to the pointer to the entry; |
1120 | * this allows the entry to be deleted. |
1121 | */ |
1122 | struct bare_shunt **bare_shunt_ptr(const ip_selector *our_client, |
1123 | const ip_selector *peer_client, |
1124 | int transport_proto) |
1125 | |
1126 | { |
1127 | struct bare_shunt *p, **pp; |
1128 | |
1129 | for (pp = &bare_shunts; (p = *pp) != NULL((void*)0); pp = &p->next) { |
1130 | if (transport_proto == p->transport_proto && |
1131 | selector_eq(our_client, &p->our_client) && |
1132 | selector_eq(peer_client, &p->peer_client)) { |
1133 | return pp; |
1134 | } |
1135 | } |
1136 | return NULL((void*)0); |
1137 | } |
1138 | |
1139 | /* free a bare_shunt entry, given a pointer to the pointer */ |
1140 | static void free_bare_shunt(struct bare_shunt **pp) |
1141 | { |
1142 | struct bare_shunt *p; |
1143 | |
1144 | passert(pp != NULL){ _Bool assertion__ = pp != ((void*)0); if (!assertion__) { lsw_passert_fail ((where_t) { .func = __func__, .basename = "kernel.c" , .line = 1144}, "%s", "pp != NULL"); } }; |
1145 | |
1146 | p = *pp; |
1147 | |
1148 | *pp = p->next; |
1149 | dbg_bare_shunt("delete", p); |
1150 | pfreeany(p->from_cn){ typeof(p->from_cn) *pp_ = &(p->from_cn); if (*pp_ != ((void*)0)) { pfree(*pp_); *pp_ = ((void*)0); } }; |
1151 | pfree(p); |
1152 | } |
1153 | |
1154 | unsigned shunt_count(void) |
1155 | { |
1156 | unsigned i = 0; |
1157 | |
1158 | for (const struct bare_shunt *bs = bare_shunts; bs != NULL((void*)0); bs = bs->next) |
1159 | { |
1160 | i++; |
1161 | } |
1162 | |
1163 | return i; |
1164 | } |
1165 | |
1166 | void show_shunt_status(struct show *s) |
1167 | { |
1168 | show_separator(s); |
1169 | show_comment(s, "Bare Shunt list:"); |
1170 | show_separator(s); |
1171 | |
1172 | for (const struct bare_shunt *bs = bare_shunts; bs != NULL((void*)0); bs = bs->next) { |
1173 | /* Print interesting fields. Ignore count and last_active. */ |
1174 | selector_buf ourb; |
1175 | selector_buf peerb; |
1176 | said_buf sat; |
1177 | |
1178 | char prio[POLICY_PRIO_BUF(3 + 1 + 3 + 1 + 10)]; |
1179 | fmt_policy_prio(bs->policy_prio, prio); |
1180 | |
1181 | show_comment(s, "%s -%d-> %s => %s %s %s", |
1182 | str_selector(&(bs)->our_client, &ourb), |
1183 | bs->transport_proto, |
1184 | str_selector(&(bs)->peer_client, &peerb), |
1185 | str_said(&(bs)->said, &sat), |
1186 | prio, bs->why); |
1187 | } |
1188 | } |
1189 | |
1190 | /* Setup an IPsec route entry. |
1191 | * op is one of the ERO_* operators. |
1192 | */ |
1193 | |
1194 | // should be made static again once we fix initiate.c calling this directly! |
1195 | bool_Bool raw_eroute(const ip_address *this_host, |
1196 | const ip_subnet *this_client, |
1197 | const ip_address *that_host, |
1198 | const ip_subnet *that_client, |
1199 | ipsec_spi_t cur_spi, |
1200 | ipsec_spi_t new_spi, |
1201 | const struct ip_protocol *sa_proto, |
1202 | unsigned int transport_proto, |
1203 | enum eroute_type esatype, |
1204 | const struct pfkey_proto_info *proto_info, |
1205 | deltatime_t use_lifetime, |
1206 | uint32_t sa_priority, |
1207 | const struct sa_marks *sa_marks, |
1208 | const uint32_t xfrm_if_id, |
1209 | enum pluto_sadb_operations op, |
1210 | const char *opname, |
1211 | const char *policy_label) |
1212 | { |
1213 | char text_said[SATOT_BUFsizeof(said_buf) + SATOT_BUFsizeof(said_buf)]; |
1214 | |
1215 | switch (op) { |
1216 | case ERO_ADD: |
1217 | case ERO_ADD_INBOUND: |
1218 | set_text_said(text_said, that_host, new_spi, sa_proto); |
1219 | break; |
1220 | case ERO_DELETE: |
1221 | case ERO_DEL_INBOUND: |
1222 | set_text_said(text_said, that_host, cur_spi, sa_proto); |
1223 | break; |
1224 | case ERO_REPLACE: |
1225 | case ERO_REPLACE_INBOUND: |
1226 | { |
1227 | size_t w; |
1228 | |
1229 | set_text_said(text_said, that_host, cur_spi, sa_proto); |
1230 | w = strlen(text_said); |
1231 | text_said[w] = '>'; |
1232 | set_text_said(text_said + w + 1, that_host, new_spi, sa_proto); |
1233 | break; |
1234 | } |
1235 | default: |
1236 | bad_case(op)libreswan_bad_case("op", (op), (where_t) { .func = __func__, . basename = "kernel.c" , .line = 1236}); |
1237 | } |
1238 | |
1239 | if (DBGP(DBG_BASE)(cur_debugging & (((lset_t)1 << (DBG_BASE_IX))))) { |
1240 | selector_buf mybuf; |
1241 | selector_buf peerbuf; |
1242 | DBG_log("%s eroute %s --%d-> %s => %s using reqid %d (raw_eroute) proto=%d", |
1243 | opname, |
1244 | str_selector(this_client, &mybuf), |
1245 | transport_proto, |
1246 | str_selector(that_client, &peerbuf), |
1247 | text_said, |
1248 | proto_info->reqid, |
1249 | proto_info->proto); |
1250 | |
1251 | if (policy_label != NULL((void*)0)) |
1252 | DBG_log("policy security label %s", |
1253 | policy_label); |
1254 | } |
1255 | |
1256 | bool_Bool result = kernel_ops->raw_eroute(this_host, this_client, |
1257 | that_host, that_client, |
1258 | cur_spi, new_spi, sa_proto, |
1259 | transport_proto, |
1260 | esatype, proto_info, |
1261 | use_lifetime, sa_priority, sa_marks, |
1262 | xfrm_if_id, op, text_said, |
1263 | policy_label); |
1264 | dbg("raw_eroute result=%s", result ? "success" : "failed"){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("raw_eroute result=%s", result ? "success" : "failed" ); } }; |
1265 | |
1266 | return result; |
1267 | } |
1268 | |
1269 | /* |
1270 | * Clear any bare shunt holds that overlap with the network we have |
1271 | * just routed. We only consider "narrow" holds: ones for a single |
1272 | * address to single address. |
1273 | */ |
1274 | static void clear_narrow_holds(const ip_selector *our_client, |
1275 | const ip_selector *peer_client, |
1276 | int transport_proto) |
1277 | { |
1278 | struct bare_shunt *p, **pp; |
1279 | |
1280 | for (pp = &bare_shunts; (p = *pp) != NULL((void*)0); ) { |
1281 | /* |
1282 | * is p->{local,remote} within {local,remote}. |
1283 | */ |
1284 | if (p->said.spi == htonl(SPI_HOLD259) && |
1285 | transport_proto == p->transport_proto && |
1286 | selector_in_selector(&p->our_client, our_client) && |
1287 | selector_in_selector(&p->peer_client, peer_client)) { |
1288 | if (!delete_bare_shunt(&p->our_client.addr, &p->peer_client.addr, |
1289 | transport_proto, SPI_HOLD259, |
1290 | "removing clashing narrow hold")) { |
1291 | /* ??? we could not delete a bare shunt */ |
1292 | log_bare_shunt(RC_LOG, "failed to delete", p); |
1293 | break; /* unlikely to succeed a second time */ |
1294 | } else if (*pp == p) { |
1295 | /* |
1296 | * ??? We deleted the wrong bare shunt! |
1297 | * This happened because more than one entry |
1298 | * matched and we happened to delete a |
1299 | * different one. |
1300 | * Log it! And keep deleting. |
1301 | */ |
1302 | log_bare_shunt(RC_LOG, "UNEXPECTEDLY SURVIVING", p); |
1303 | pp = &bare_shunts; /* just in case, start over */ |
1304 | } |
1305 | /* |
1306 | * ??? if we were sure that there could only be one |
1307 | * matching entry, we could break out of the FOR. |
1308 | * For an unknown reason this is not always the case, |
1309 | * so we will continue the loop, with pp unchanged. |
1310 | */ |
1311 | } else { |
1312 | pp = &p->next; |
1313 | } |
1314 | } |
1315 | } |
1316 | |
1317 | /* |
1318 | * Replace (or delete) a shunt that is in the bare_shunts table. |
1319 | * Issues the PF_KEY commands and updates the bare_shunts table. |
1320 | */ |
1321 | static bool_Bool fiddle_bare_shunt(const ip_address *src, const ip_address *dst, |
1322 | policy_prio_t policy_prio, /* of replacing shunt*/ |
1323 | ipsec_spi_t cur_shunt_spi, /* in host order! */ |
1324 | ipsec_spi_t new_shunt_spi, /* in host order! */ |
1325 | bool_Bool repl, /* if TRUE, replace; if FALSE, delete */ |
1326 | int transport_proto, |
1327 | const char *why) |
1328 | { |
1329 | ip_subnet this_client, that_client; |
1330 | const ip_address null_host = address_any(address_type(src)); |
1331 | |
1332 | dbg("fiddle_bare_shunt called"){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("fiddle_bare_shunt called"); } }; |
1333 | |
1334 | passert(addrtypeof(src) == addrtypeof(dst)){ _Bool assertion__ = addrtypeof(src) == addrtypeof(dst); if ( !assertion__) { lsw_passert_fail((where_t) { .func = __func__ , .basename = "kernel.c" , .line = 1334}, "%s", "addrtypeof(src) == addrtypeof(dst)" ); } }; |
1335 | happy(endtosubnet(src, &this_client, HERE)){ err_t ugh = endtosubnet(src, &this_client, (where_t) { . func = __func__, .basename = "kernel.c" , .line = 1335}); if ( ugh != ((void*)0)) { lsw_passert_fail((where_t) { .func = __func__ , .basename = "kernel.c" , .line = 1335}, "%s", ugh); } }; |
1336 | happy(endtosubnet(dst, &that_client, HERE)){ err_t ugh = endtosubnet(dst, &that_client, (where_t) { . func = __func__, .basename = "kernel.c" , .line = 1336}); if ( ugh != ((void*)0)) { lsw_passert_fail((where_t) { .func = __func__ , .basename = "kernel.c" , .line = 1336}, "%s", ugh); } }; |
1337 | |
1338 | /* |
1339 | * ??? this comment might be obsolete. |
1340 | * If the transport protocol is not the wildcard (0), then we need |
1341 | * to look for a host<->host shunt, and replace that with the |
1342 | * shunt spi, and then we add a %HOLD for what was there before. |
1343 | * |
1344 | * This is at odds with !repl, which should delete things. |
1345 | * |
1346 | */ |
1347 | |
1348 | dbg("fiddle_bare_shunt with transport_proto %d", transport_proto){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("fiddle_bare_shunt with transport_proto %d", transport_proto ); } }; |
1349 | |
1350 | enum pluto_sadb_operations op = repl ? ERO_REPLACE : ERO_DELETE; |
1351 | |
1352 | dbg("%s specific host-to-host bare shunt", repl ? "replacing" : "removing"){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("%s specific host-to-host bare shunt", repl ? "replacing" : "removing"); } }; |
1353 | if (kernel_ops->type == USE_XFRM && strstr(why, "IGNORE_ON_XFRM:") != NULL((void*)0)) { |
1354 | dbg("skipping raw_eroute because IGNORE_ON_XFRM"){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("skipping raw_eroute because IGNORE_ON_XFRM"); } }; |
1355 | struct bare_shunt **bs_pp = bare_shunt_ptr( |
1356 | &this_client, |
1357 | &that_client, |
1358 | transport_proto); |
1359 | |
1360 | free_bare_shunt(bs_pp); |
1361 | libreswan_log("raw_eroute() to op='%s' with transport_proto='%d' kernel shunt skipped - deleting from pluto shunt table",loglog(RC_LOG, "raw_eroute() to op='%s' with transport_proto='%d' kernel shunt skipped - deleting from pluto shunt table" , repl ? "replace" : "delete", transport_proto) |
1362 | repl ? "replace" : "delete",loglog(RC_LOG, "raw_eroute() to op='%s' with transport_proto='%d' kernel shunt skipped - deleting from pluto shunt table" , repl ? "replace" : "delete", transport_proto) |
1363 | transport_proto)loglog(RC_LOG, "raw_eroute() to op='%s' with transport_proto='%d' kernel shunt skipped - deleting from pluto shunt table" , repl ? "replace" : "delete", transport_proto); |
1364 | return TRUE1; |
1365 | } else if (raw_eroute(&null_host, &this_client, |
1366 | &null_host, &that_client, |
1367 | htonl(cur_shunt_spi), |
1368 | htonl(new_shunt_spi), |
1369 | &ip_protocol_internal, transport_proto, |
1370 | ET_INT, null_proto_info, |
1371 | deltatime(SHUNT_PATIENCE((2 * 10) * 15 / 2)), |
1372 | 0, /* we don't know connection for priority yet */ |
1373 | NULL((void*)0), /* sa_marks */ |
1374 | 0 /* xfrm interface id */, |
1375 | |
1376 | op, why, NULL((void*)0))) |
1377 | { |
1378 | struct bare_shunt **bs_pp = bare_shunt_ptr( |
1379 | &this_client, |
1380 | &that_client, |
1381 | transport_proto); |
1382 | |
1383 | dbg("raw_eroute with op='%s' for transport_proto='%d' kernel shunt succeeded, bare shunt lookup %s",{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("raw_eroute with op='%s' for transport_proto='%d' kernel shunt succeeded, bare shunt lookup %s" , repl ? "replace" : "delete", transport_proto, (bs_pp == ((void *)0)) ? "failed" : "succeeded"); } } |
1384 | repl ? "replace" : "delete", transport_proto,{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("raw_eroute with op='%s' for transport_proto='%d' kernel shunt succeeded, bare shunt lookup %s" , repl ? "replace" : "delete", transport_proto, (bs_pp == ((void *)0)) ? "failed" : "succeeded"); } } |
1385 | (bs_pp == NULL) ? "failed" : "succeeded"){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("raw_eroute with op='%s' for transport_proto='%d' kernel shunt succeeded, bare shunt lookup %s" , repl ? "replace" : "delete", transport_proto, (bs_pp == ((void *)0)) ? "failed" : "succeeded"); } }; |
1386 | |
1387 | /* we can have proto mismatching acquires with xfrm - this is a bad workaround */ |
1388 | /* ??? what is the nature of those mismatching acquires? */ |
1389 | /* passert(bs_pp != NULL); */ |
1390 | if (bs_pp == NULL((void*)0)) { |
1391 | ipstr_buf srcb, dstb; |
1392 | |
1393 | libreswan_log("can't find expected bare shunt to %s: %s->%s transport_proto='%d'",loglog(RC_LOG, "can't find expected bare shunt to %s: %s->%s transport_proto='%d'" , repl ? "replace" : "delete", ipstr(src, &srcb), ipstr(dst , &dstb), transport_proto) |
1394 | repl ? "replace" : "delete",loglog(RC_LOG, "can't find expected bare shunt to %s: %s->%s transport_proto='%d'" , repl ? "replace" : "delete", ipstr(src, &srcb), ipstr(dst , &dstb), transport_proto) |
1395 | ipstr(src, &srcb), ipstr(dst, &dstb),loglog(RC_LOG, "can't find expected bare shunt to %s: %s->%s transport_proto='%d'" , repl ? "replace" : "delete", ipstr(src, &srcb), ipstr(dst , &dstb), transport_proto) |
1396 | transport_proto)loglog(RC_LOG, "can't find expected bare shunt to %s: %s->%s transport_proto='%d'" , repl ? "replace" : "delete", ipstr(src, &srcb), ipstr(dst , &dstb), transport_proto); |
1397 | return TRUE1; |
1398 | } |
1399 | |
1400 | if (repl) { |
1401 | /* |
1402 | * change over to new bare eroute |
1403 | * ours, peers, transport_proto are the same. |
1404 | */ |
1405 | struct bare_shunt *bs = *bs_pp; |
1406 | |
1407 | bs->why = why; |
1408 | bs->policy_prio = policy_prio; |
1409 | bs->said = said3(&null_host, htonl(new_shunt_spi), &ip_protocol_internal); |
1410 | bs->count = 0; |
1411 | bs->last_activity = mononow(); |
1412 | dbg_bare_shunt("change", bs); |
1413 | } else { |
1414 | /* delete pluto bare shunt */ |
1415 | free_bare_shunt(bs_pp); |
1416 | } |
1417 | return TRUE1; |
1418 | } else { |
1419 | struct bare_shunt **bs_pp = bare_shunt_ptr( |
1420 | &this_client, |
1421 | &that_client, |
1422 | transport_proto); |
1423 | |
1424 | free_bare_shunt(bs_pp); |
1425 | libreswan_log("raw_eroute() to op='%s' with transport_proto='%d' kernel shunt failed - deleting from pluto shunt table",loglog(RC_LOG, "raw_eroute() to op='%s' with transport_proto='%d' kernel shunt failed - deleting from pluto shunt table" , repl ? "replace" : "delete", transport_proto) |
1426 | repl ? "replace" : "delete",loglog(RC_LOG, "raw_eroute() to op='%s' with transport_proto='%d' kernel shunt failed - deleting from pluto shunt table" , repl ? "replace" : "delete", transport_proto) |
1427 | transport_proto)loglog(RC_LOG, "raw_eroute() to op='%s' with transport_proto='%d' kernel shunt failed - deleting from pluto shunt table" , repl ? "replace" : "delete", transport_proto); |
1428 | |
1429 | return FALSE0; |
1430 | } |
1431 | } |
1432 | |
1433 | bool_Bool replace_bare_shunt(const ip_address *src, const ip_address *dst, |
1434 | policy_prio_t policy_prio, /* of replacing shunt*/ |
1435 | ipsec_spi_t cur_shunt_spi, /* in host order! */ |
1436 | ipsec_spi_t new_shunt_spi, /* in host order! */ |
1437 | int transport_proto, |
1438 | const char *why) |
1439 | { |
1440 | return fiddle_bare_shunt(src, dst, policy_prio, cur_shunt_spi, new_shunt_spi, TRUE1, transport_proto, why); |
1441 | } |
1442 | |
1443 | bool_Bool delete_bare_shunt(const ip_address *src, const ip_address *dst, |
1444 | int transport_proto, ipsec_spi_t cur_shunt_spi, |
1445 | const char *why) |
1446 | { |
1447 | return fiddle_bare_shunt(src, dst, BOTTOM_PRIO((policy_prio_t)0), cur_shunt_spi, SPI_PASS256 /* unused */, FALSE0, transport_proto, why); |
1448 | } |
1449 | |
1450 | bool_Bool eroute_connection(const struct spd_route *sr, |
1451 | ipsec_spi_t cur_spi, |
1452 | ipsec_spi_t new_spi, |
1453 | const struct ip_protocol *sa_proto, |
1454 | enum eroute_type esatype, |
1455 | const struct pfkey_proto_info *proto_info, |
1456 | uint32_t sa_priority, |
1457 | const struct sa_marks *sa_marks, |
1458 | const uint32_t xfrm_if_id, |
1459 | unsigned int op, |
1460 | const char *opname, |
1461 | const char *policy_label) |
1462 | { |
1463 | ip_address peer = sr->that.host_addr; |
1464 | char buf2[256]; |
1465 | |
1466 | snprintf(buf2, sizeof(buf2), |
1467 | "eroute_connection %s", opname); |
1468 | |
1469 | if (sa_proto == &ip_protocol_internal) |
1470 | peer = address_any(address_type(&peer)); |
1471 | |
1472 | if (sr->this.has_cat) { |
1473 | ip_subnet client; |
1474 | |
1475 | endtosubnet(&sr->this.host_addr, &client, HERE(where_t) { .func = __func__, .basename = "kernel.c" , .line = 1475}); |
1476 | bool_Bool t = raw_eroute(&sr->this.host_addr, &client, |
1477 | &peer, &sr->that.client, |
1478 | cur_spi, |
1479 | new_spi, |
1480 | sa_proto, |
1481 | sr->this.protocol, |
1482 | esatype, |
1483 | proto_info, |
1484 | deltatime(0), |
1485 | sa_priority, sa_marks, |
1486 | xfrm_if_id, |
1487 | op, buf2, |
1488 | policy_label); |
1489 | if (!t) |
1490 | libreswan_log("CAT: failed to eroute additional Client Address Translation policy")loglog(RC_LOG, "CAT: failed to eroute additional Client Address Translation policy" ); |
1491 | |
1492 | dbg("%s CAT extra route added return=%d", __func__, t){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("%s CAT extra route added return=%d", __func__ , t); } }; |
1493 | } |
1494 | |
1495 | return raw_eroute(&sr->this.host_addr, &sr->this.client, |
1496 | &peer, &sr->that.client, |
1497 | cur_spi, |
1498 | new_spi, |
1499 | sa_proto, |
1500 | sr->this.protocol, |
1501 | esatype, |
1502 | proto_info, |
1503 | deltatime(0), |
1504 | sa_priority, sa_marks, |
1505 | xfrm_if_id, |
1506 | op, buf2, |
1507 | policy_label); |
1508 | } |
1509 | |
1510 | /* assign a bare hold or pass to a connection */ |
1511 | |
1512 | bool_Bool assign_holdpass(const struct connection *c, |
1513 | struct spd_route *sr, |
1514 | int transport_proto, ipsec_spi_t negotiation_shunt, |
1515 | const ip_address *src, const ip_address *dst) |
1516 | { |
1517 | /* |
1518 | * either the automatically installed %hold eroute is broad enough |
1519 | * or we try to add a broader one and delete the automatic one. |
1520 | * Beware: this %hold might be already handled, but still squeak |
1521 | * through because of a race. |
1522 | */ |
1523 | enum routing_t ro = sr->routing, /* routing, old */ |
1524 | rn = ro; /* routing, new */ |
1525 | |
1526 | passert(LHAS(LELEM(CK_PERMANENT) | LELEM(CK_INSTANCE), c->kind)){ _Bool assertion__ = (((((lset_t)1 << (CK_PERMANENT)) | ((lset_t)1 << (CK_INSTANCE))) & ((lset_t)1 << (c->kind))) != ((lset_t)0)); if (!assertion__) { lsw_passert_fail ((where_t) { .func = __func__, .basename = "kernel.c" , .line = 1526}, "%s", "LHAS(LELEM(CK_PERMANENT) | LELEM(CK_INSTANCE), c->kind)" ); } }; |
1527 | /* figure out what routing should become */ |
1528 | switch (ro) { |
1529 | case RT_UNROUTED: |
1530 | rn = RT_UNROUTED_HOLD; |
1531 | break; |
1532 | case RT_ROUTED_PROSPECTIVE: |
1533 | rn = RT_ROUTED_HOLD; |
1534 | break; |
1535 | default: |
1536 | /* no change: this %hold or %pass is old news */ |
1537 | break; |
1538 | } |
1539 | |
1540 | dbg("assign hold, routing was %s, needs to be %s",{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("assign hold, routing was %s, needs to be %s", enum_name(&routing_story, ro), enum_name(&routing_story , rn)); } } |
1541 | enum_name(&routing_story, ro),{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("assign hold, routing was %s, needs to be %s", enum_name(&routing_story, ro), enum_name(&routing_story , rn)); } } |
1542 | enum_name(&routing_story, rn)){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("assign hold, routing was %s, needs to be %s", enum_name(&routing_story, ro), enum_name(&routing_story , rn)); } }; |
1543 | |
1544 | if (eclipsable(sr)(subnetishost(&(sr)->this.client) && subnetishost (&(sr)->that.client))) { |
1545 | /* |
1546 | * Although %hold or %pass is appropriately broad, it will |
1547 | * no longer be bare so we must ditch it from the bare table |
1548 | */ |
1549 | struct bare_shunt **old = bare_shunt_ptr(&sr->this.client, &sr->that.client, sr->this.protocol); |
1550 | |
1551 | if (old == NULL((void*)0)) { |
1552 | /* ??? should this happen? It does. */ |
1553 | libreswan_log("assign_holdpass() no bare shunt to remove? - mismatch?")loglog(RC_LOG, "assign_holdpass() no bare shunt to remove? - mismatch?" ); |
1554 | } else { |
1555 | /* ??? should this happen? */ |
1556 | dbg("assign_holdpass() removing bare shunt"){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("assign_holdpass() removing bare shunt"); } }; |
1557 | free_bare_shunt(old); |
1558 | } |
1559 | } else { |
1560 | dbg("assign_holdpass() need broad(er) shunt"){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("assign_holdpass() need broad(er) shunt"); } }; |
1561 | /* |
1562 | * we need a broad %hold, not the narrow one. |
1563 | * First we ensure that there is a broad %hold. |
1564 | * There may already be one (race condition): no need to |
1565 | * create one. |
1566 | * There may already be a %trap: replace it. |
1567 | * There may not be any broad eroute: add %hold. |
1568 | * Once the broad %hold is in place, delete the narrow one. |
1569 | */ |
1570 | if (rn != ro) { |
1571 | int op; |
1572 | const char *reason; |
1573 | |
1574 | if (erouted(ro)((ro) != RT_UNROUTED)) { |
1575 | op = ERO_REPLACE; |
1576 | reason = "replace %trap with broad %pass or %hold"; |
1577 | } else { |
1578 | op = ERO_ADD; |
1579 | reason = "add broad %pass or %hold"; |
1580 | } |
1581 | |
1582 | if (eroute_connection(sr, |
1583 | htonl(SPI_HOLD259), /* kernel induced */ |
1584 | htonl(negotiation_shunt), |
1585 | &ip_protocol_internal, ET_INT, |
1586 | null_proto_info, |
1587 | calculate_sa_prio(c, FALSE0), |
1588 | NULL((void*)0), 0 /* xfrm_if_id */, |
1589 | op, |
1590 | reason, |
1591 | c->policy_label)) |
1592 | { |
1593 | dbg("assign_holdpass() eroute_connection() done"){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("assign_holdpass() eroute_connection() done"); } }; |
1594 | } else { |
1595 | libreswan_log("assign_holdpass() eroute_connection() failed")loglog(RC_LOG, "assign_holdpass() eroute_connection() failed" ); |
1596 | return FALSE0; |
1597 | } |
1598 | } |
1599 | |
1600 | if (!delete_bare_shunt(src, dst, |
1601 | transport_proto, |
1602 | (c->policy & POLICY_NEGO_PASS((lset_t)1 << (POLICY_NEGO_PASS_IX))) ? SPI_PASS256 : SPI_HOLD259, |
1603 | (c->policy & POLICY_NEGO_PASS((lset_t)1 << (POLICY_NEGO_PASS_IX))) ? "delete narrow %pass" : |
1604 | "delete narrow %hold")) { |
1605 | dbg("assign_holdpass() delete_bare_shunt() succeeded"){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("assign_holdpass() delete_bare_shunt() succeeded" ); } }; |
1606 | } else { |
1607 | libreswan_log("assign_holdpass() delete_bare_shunt() failed")loglog(RC_LOG, "assign_holdpass() delete_bare_shunt() failed" ); |
1608 | return FALSE0; |
1609 | } |
1610 | } |
1611 | sr->routing = rn; |
1612 | dbg(" assign_holdpass() done - returning success"){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log(" assign_holdpass() done - returning success") ; } }; |
1613 | return TRUE1; |
1614 | } |
1615 | |
1616 | /* compute a (host-order!) SPI to implement the policy in connection c */ |
1617 | ipsec_spi_t shunt_policy_spi(const struct connection *c, bool_Bool prospective) |
1618 | { |
1619 | /* note: these are in host order :-( */ |
1620 | static const ipsec_spi_t shunt_spi[] = |
1621 | { |
1622 | SPI_TRAP260, /* --initiateontraffic */ |
1623 | SPI_PASS256, /* --pass */ |
1624 | SPI_DROP257, /* --drop */ |
1625 | SPI_REJECT258, /* --reject */ |
1626 | }; |
1627 | |
1628 | static const ipsec_spi_t fail_spi[] = |
1629 | { |
1630 | 0, /* --none*/ |
1631 | SPI_PASS256, /* --failpass */ |
1632 | SPI_DROP257, /* --faildrop */ |
1633 | SPI_REJECT258, /* --failreject */ |
1634 | }; |
1635 | |
1636 | return prospective ? |
1637 | shunt_spi[(c->policy & POLICY_SHUNT_MASK(((lset_t)1 << (POLICY_SHUNT1_IX)) - ((lset_t)1 << (POLICY_SHUNT0_IX)) + ((lset_t)1 << (POLICY_SHUNT1_IX) ))) >> |
1638 | POLICY_SHUNT_SHIFTPOLICY_SHUNT0_IX] : |
1639 | fail_spi[(c->policy & POLICY_FAIL_MASK(((lset_t)1 << (POLICY_FAIL1_IX)) - ((lset_t)1 << (POLICY_FAIL0_IX)) + ((lset_t)1 << (POLICY_FAIL1_IX)))) >> POLICY_FAIL_SHIFTPOLICY_FAIL0_IX]; |
1640 | } |
1641 | |
1642 | bool_Bool del_spi(ipsec_spi_t spi, const struct ip_protocol *proto, |
1643 | const ip_address *src, const ip_address *dest) |
1644 | { |
1645 | char text_said[SATOT_BUFsizeof(said_buf)]; |
1646 | |
1647 | set_text_said(text_said, dest, spi, proto); |
1648 | |
1649 | dbg("delete %s", text_said){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("delete %s", text_said); } }; |
1650 | |
1651 | struct kernel_sa sa = { |
1652 | .spi = spi, |
1653 | .proto = proto, |
1654 | .src.address = src, |
1655 | .dst.address = dest, |
1656 | .text_said = text_said, |
1657 | }; |
1658 | |
1659 | passert(kernel_ops->del_sa != NULL){ _Bool assertion__ = kernel_ops->del_sa != ((void*)0); if (!assertion__) { lsw_passert_fail((where_t) { .func = __func__ , .basename = "kernel.c" , .line = 1659}, "%s", "kernel_ops->del_sa != NULL" ); } }; |
1660 | return kernel_ops->del_sa(&sa); |
1661 | } |
1662 | |
1663 | static void setup_esp_nic_offload(struct kernel_sa *sa, struct connection *c, |
1664 | bool_Bool *nic_offload_fallback) |
1665 | { |
1666 | if (c->nic_offload == yna_no || |
1667 | c->interface == NULL((void*)0) || c->interface->ip_dev == NULL((void*)0) || |
1668 | c->interface->ip_dev->id_rname == NULL((void*)0)) { |
1669 | dbg("NIC esp-hw-offload disabled for connection '%s'", c->name){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("NIC esp-hw-offload disabled for connection '%s'" , c->name); } }; |
1670 | return; |
1671 | } |
1672 | |
1673 | if (c->nic_offload == yna_auto) { |
1674 | if (!c->interface->ip_dev->id_nic_offload) { |
1675 | dbg("NIC esp-hw-offload not for connection '%s' not available on interface %s",{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("NIC esp-hw-offload not for connection '%s' not available on interface %s" , c->name, c->interface->ip_dev->id_rname); } } |
1676 | c->name, c->interface->ip_dev->id_rname){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("NIC esp-hw-offload not for connection '%s' not available on interface %s" , c->name, c->interface->ip_dev->id_rname); } }; |
1677 | return; |
1678 | } |
1679 | *nic_offload_fallback = TRUE1; |
1680 | dbg("NIC esp-hw-offload offload for connection '%s' enabled on interface %s",{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("NIC esp-hw-offload offload for connection '%s' enabled on interface %s" , c->name, c->interface->ip_dev->id_rname); } } |
1681 | c->name, c->interface->ip_dev->id_rname){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("NIC esp-hw-offload offload for connection '%s' enabled on interface %s" , c->name, c->interface->ip_dev->id_rname); } }; |
1682 | } |
1683 | sa->nic_offload_dev = c->interface->ip_dev->id_rname; |
1684 | } |
1685 | |
1686 | /* |
1687 | * Set up one direction of the SA bundle |
1688 | */ |
1689 | static bool_Bool setup_half_ipsec_sa(struct state *st, bool_Bool inbound) |
1690 | { |
1691 | /* Build an inbound or outbound SA */ |
1692 | |
1693 | struct connection *c = st->st_connection; |
1694 | ipsec_spi_t inner_spi = 0; |
1695 | const struct ip_protocol *proto = NULL((void*)0); |
1696 | enum eroute_type esatype = ET_UNSPEC; |
1697 | bool_Bool replace = inbound && (kernel_ops->get_spi != NULL((void*)0)); |
1698 | bool_Bool outgoing_ref_set = FALSE0; |
1699 | bool_Bool incoming_ref_set = FALSE0; |
1700 | IPsecSAref_t ref_peer = st->st_ref_peer; |
1701 | IPsecSAref_t new_ref_peer = IPSEC_SAREF_NULL((IPsecSAref_t)0u); |
1702 | bool_Bool nic_offload_fallback = FALSE0; |
1703 | |
1704 | /* SPIs, saved for spigrouping or undoing, if necessary */ |
1705 | struct kernel_sa said[EM_MAXRELSPIS4]; |
1706 | struct kernel_sa *said_next = said; |
1707 | |
1708 | char text_ipcomp[SATOT_BUFsizeof(said_buf)]; |
1709 | char text_esp[SATOT_BUFsizeof(said_buf)]; |
1710 | char text_ah[SATOT_BUFsizeof(said_buf)]; |
1711 | |
1712 | ip_address src, dst; |
1713 | ip_selector src_client, dst_client; |
1714 | if (inbound) { |
1715 | src = c->spd.that.host_addr; |
1716 | src_client = c->spd.that.client; |
1717 | dst = c->spd.this.host_addr; |
1718 | dst_client = c->spd.this.client; |
1719 | } else { |
1720 | src = c->spd.this.host_addr, |
1721 | src_client = c->spd.this.client; |
1722 | dst = c->spd.that.host_addr; |
1723 | dst_client = c->spd.that.client; |
1724 | } |
1725 | /* XXX: code is stuffing an endpoint in .host_addr */ |
1726 | src = strip_endpoint(&src, HERE(where_t) { .func = __func__, .basename = "kernel.c" , .line = 1726}); |
1727 | dst = strip_endpoint(&dst, HERE(where_t) { .func = __func__, .basename = "kernel.c" , .line = 1727}); |
1728 | |
1729 | /* |
1730 | * mode: encapsulation mode called for |
1731 | * encap_oneshot: copy of "encapsulation" but reset to |
1732 | * ENCAPSULATION_MODE_TRANSPORT after use. |
1733 | */ |
1734 | int mode = ENCAPSULATION_MODE_TRANSPORT2; |
1735 | bool_Bool add_selector; |
1736 | |
1737 | if (st->st_ah.attrs.mode == ENCAPSULATION_MODE_TUNNEL1 || |
1738 | st->st_esp.attrs.mode == ENCAPSULATION_MODE_TUNNEL1 || |
1739 | st->st_ipcomp.attrs.mode == ENCAPSULATION_MODE_TUNNEL1) { |
1740 | mode = ENCAPSULATION_MODE_TUNNEL1; |
1741 | add_selector = FALSE0; /* Don't add selectors for tunnel mode */ |
1742 | } else { |
1743 | /* |
1744 | * RFC 4301, Section 5.2 Requires traffic selectors to be set |
1745 | * on transport mode |
1746 | */ |
1747 | add_selector = TRUE1; |
1748 | } |
1749 | c->ipsec_mode = mode; |
1750 | |
1751 | int encap_oneshot = mode; |
1752 | |
1753 | struct kernel_sa said_boilerplate = { |
1754 | .src.address = &src, |
1755 | .dst.address = &dst, |
1756 | .src.client = &src_client, |
1757 | .dst.client = &dst_client, |
1758 | .inbound = inbound, |
1759 | .add_selector = add_selector, |
1760 | .transport_proto = c->spd.this.protocol, |
1761 | .sa_lifetime = c->sa_ipsec_life_seconds, |
1762 | .outif = -1, |
1763 | .sec_ctx = st->sec_ctx, |
1764 | }; |
1765 | |
1766 | inner_spi = SPI_PASS256; |
1767 | if (mode == ENCAPSULATION_MODE_TUNNEL1) { |
1768 | /* If we are tunnelling, set up IP in IP pseudo SA */ |
1769 | proto = &ip_protocol_ipip; |
1770 | esatype = ET_IPIP; |
1771 | } else { |
1772 | /* For transport mode set ESP */ |
1773 | /* ??? why are we sure that this isn't AH? */ |
1774 | proto = &ip_protocol_esp; |
1775 | esatype = ET_ESP; |
1776 | } |
1777 | |
1778 | /* set up IPCOMP SA, if any */ |
1779 | |
1780 | if (st->st_ipcomp.present) { |
1781 | ipsec_spi_t ipcomp_spi = |
1782 | inbound ? st->st_ipcomp.our_spi : st->st_ipcomp.attrs.spi; |
1783 | unsigned compalg; |
1784 | |
1785 | switch (st->st_ipcomp.attrs.transattrs.ta_comp) { |
1786 | case IPCOMP_DEFLATE: |
1787 | compalg = SADB_X_CALG_DEFLATE2; |
1788 | break; |
1789 | |
1790 | default: |
1791 | loglog(RC_LOG_SERIOUS, |
1792 | "IPCOMP transform %s not implemented", |
1793 | st->st_ipcomp.attrs.transattrs.ta_encrypt->common.fqn); |
1794 | goto fail; |
1795 | } |
1796 | |
1797 | set_text_said(text_ipcomp, &dst, ipcomp_spi, &ip_protocol_comp); |
1798 | |
1799 | *said_next = said_boilerplate; |
1800 | said_next->spi = ipcomp_spi; |
1801 | said_next->esatype = ET_IPCOMP; |
1802 | said_next->compalg = compalg; |
1803 | said_next->mode = encap_oneshot; |
1804 | said_next->reqid = reqid_ipcomp(c->spd.reqid); |
1805 | said_next->text_said = text_ipcomp; |
1806 | |
1807 | if (inbound) { |
1808 | /* |
1809 | * set corresponding outbound SA. We can do this on |
1810 | * each SA in the bundle without harm. |
1811 | */ |
1812 | said_next->ref_peer = ref_peer; |
1813 | } else if (!outgoing_ref_set) { |
1814 | /* on outbound, pick up the SAref if not already done */ |
1815 | said_next->ref = ref_peer; |
1816 | outgoing_ref_set = TRUE1; |
1817 | } |
1818 | |
1819 | if (!kernel_ops->add_sa(said_next, replace)) { |
1820 | libreswan_log("add_sa ipcomp failed")loglog(RC_LOG, "add_sa ipcomp failed"); |
1821 | goto fail; |
1822 | } |
1823 | |
1824 | /* |
1825 | * SA refs will have been allocated for this SA. |
1826 | * The inner most one is interesting for the outgoing SA, |
1827 | * since we refer to it in the policy that we instantiate. |
1828 | */ |
1829 | if (new_ref_peer == IPSEC_SAREF_NULL((IPsecSAref_t)0u) && !inbound) { |
1830 | new_ref_peer = said_next->ref; |
1831 | if (kernel_ops->type != USE_XFRM && new_ref_peer == IPSEC_SAREF_NULL((IPsecSAref_t)0u)) |
1832 | new_ref_peer = IPSEC_SAREF_NA((IPsecSAref_t)0xffff0001); |
1833 | } |
1834 | if (!incoming_ref_set && inbound) { |
1835 | st->st_ref = said_next->ref; |
1836 | incoming_ref_set = TRUE1; |
1837 | } |
1838 | said_next++; |
1839 | |
1840 | encap_oneshot = ENCAPSULATION_MODE_TRANSPORT2; |
1841 | } |
1842 | |
1843 | /* set up ESP SA, if any */ |
1844 | |
1845 | if (st->st_esp.present) { |
1846 | ipsec_spi_t esp_spi = |
1847 | inbound ? st->st_esp.our_spi : st->st_esp.attrs.spi; |
1848 | u_char *esp_dst_keymat = |
1849 | inbound ? st->st_esp.our_keymat : st->st_esp. |
1850 | peer_keymat; |
1851 | const struct trans_attrs *ta = &st->st_esp.attrs.transattrs; |
1852 | |
1853 | const struct ip_encap *encap_type = NULL((void*)0); |
1854 | uint16_t encap_sport = 0, encap_dport = 0; |
1855 | ip_address natt_oa; |
1856 | |
1857 | if (st->hidden_variables.st_nat_traversal & NAT_T_DETECTED( ((lset_t)1 << (NATED_HOST)) | ((lset_t)1 << (NATED_PEER )) ) || |
1858 | st->st_interface->protocol == &ip_protocol_tcp) { |
1859 | encap_type = st->st_interface->protocol->encap_esp; |
1860 | if (inbound) { |
1861 | encap_sport = endpoint_hport(&st->st_remote_endpoint); |
1862 | encap_dport = endpoint_hport(&st->st_interface->local_endpoint); |
1863 | } else { |
1864 | encap_sport = endpoint_hport(&st->st_interface->local_endpoint); |
1865 | encap_dport = endpoint_hport(&st->st_remote_endpoint); |
1866 | } |
1867 | natt_oa = st->hidden_variables.st_nat_oa; |
1868 | dbg("natt/tcp sa encap_type="PRI_IP_ENCAP" sport=%d dport=%d",{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("natt/tcp sa encap_type=""%u(%s)"" sport=%d dport=%d" , (encap_type) == ((void*)0) ? 0 : (encap_type)->encap_type , (encap_type) == ((void*)0) ? "none" : (encap_type)->name , encap_sport, encap_dport); } } |
1869 | pri_ip_encap(encap_type), encap_sport, encap_dport){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("natt/tcp sa encap_type=""%u(%s)"" sport=%d dport=%d" , (encap_type) == ((void*)0) ? 0 : (encap_type)->encap_type , (encap_type) == ((void*)0) ? "none" : (encap_type)->name , encap_sport, encap_dport); } }; |
1870 | } |
1871 | |
1872 | dbg("looking for alg with encrypt: %s keylen: %d integ: %s",{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("looking for alg with encrypt: %s keylen: %d integ: %s" , ta->ta_encrypt->common.fqn, ta->enckeylen, ta-> ta_integ->common.fqn); } } |
1873 | ta->ta_encrypt->common.fqn, ta->enckeylen, ta->ta_integ->common.fqn){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("looking for alg with encrypt: %s keylen: %d integ: %s" , ta->ta_encrypt->common.fqn, ta->enckeylen, ta-> ta_integ->common.fqn); } }; |
1874 | |
1875 | /* |
1876 | * Check that both integrity and encryption are |
1877 | * supported by the kernel. |
1878 | * |
1879 | * Since the parser uses these exact same checks when |
1880 | * loading the connection, they should never fail (if |
1881 | * they do then strange things have been going on |
1882 | * since the connection was loaded). |
1883 | */ |
1884 | if (!kernel_alg_integ_ok(ta->ta_integ)) { |
1885 | loglog(RC_LOG_SERIOUS, |
1886 | "ESP integrity algorithm %s is not implemented or allowed", |
1887 | ta->ta_integ->common.fqn); |
1888 | goto fail; |
1889 | } |
1890 | if (!kernel_alg_encrypt_ok(ta->ta_encrypt)) { |
1891 | loglog(RC_LOG_SERIOUS, |
1892 | "ESP encryption algorithm %s is not implemented or allowed", |
1893 | ta->ta_encrypt->common.fqn); |
1894 | goto fail; |
1895 | } |
1896 | |
1897 | /* |
1898 | * Validate the encryption key size. |
1899 | */ |
1900 | size_t encrypt_keymat_size; |
1901 | if (!kernel_alg_encrypt_key_size(ta->ta_encrypt, ta->enckeylen, |
1902 | &encrypt_keymat_size)) { |
1903 | loglog(RC_LOG_SERIOUS, |
1904 | "ESP encryption algorithm %s with key length %d not implemented or allowed", |
1905 | ta->ta_encrypt->common.fqn, ta->enckeylen); |
1906 | goto fail; |
1907 | } |
1908 | |
1909 | /* Fixup key lengths for special cases */ |
1910 | #ifdef USE_3DES1 |
1911 | if (ta->ta_encrypt == &ike_alg_encrypt_3des_cbc) { |
1912 | /* Grrrrr.... f*cking 7 bits jurassic algos */ |
1913 | /* 168 bits in kernel, need 192 bits for keymat_len */ |
1914 | if (encrypt_keymat_size == 21) { |
1915 | dbg("%s requires a 7-bit jurassic adjust",{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("%s requires a 7-bit jurassic adjust", ta-> ta_encrypt->common.fqn); } } |
1916 | ta->ta_encrypt->common.fqn){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("%s requires a 7-bit jurassic adjust", ta-> ta_encrypt->common.fqn); } }; |
1917 | encrypt_keymat_size = 24; |
1918 | } |
1919 | } |
1920 | #endif |
1921 | |
1922 | if (ta->ta_encrypt->salt_size > 0) { |
1923 | dbg("%s requires %zu salt bytes",{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("%s requires %zu salt bytes", ta->ta_encrypt ->common.fqn, ta->ta_encrypt->salt_size); } } |
1924 | ta->ta_encrypt->common.fqn, ta->ta_encrypt->salt_size){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("%s requires %zu salt bytes", ta->ta_encrypt ->common.fqn, ta->ta_encrypt->salt_size); } }; |
1925 | encrypt_keymat_size += ta->ta_encrypt->salt_size; |
1926 | } |
1927 | |
1928 | size_t integ_keymat_size = ta->ta_integ->integ_keymat_size; /* BYTES */ |
1929 | |
1930 | dbg("st->st_esp.keymat_len=%" PRIu16 " is encrypt_keymat_size=%zu + integ_keymat_size=%zu",{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("st->st_esp.keymat_len=%" "u" " is encrypt_keymat_size=%zu + integ_keymat_size=%zu" , st->st_esp.keymat_len, encrypt_keymat_size, integ_keymat_size ); } } |
1931 | st->st_esp.keymat_len, encrypt_keymat_size, integ_keymat_size){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("st->st_esp.keymat_len=%" "u" " is encrypt_keymat_size=%zu + integ_keymat_size=%zu" , st->st_esp.keymat_len, encrypt_keymat_size, integ_keymat_size ); } }; |
1932 | |
1933 | passert(st->st_esp.keymat_len == encrypt_keymat_size + integ_keymat_size){ _Bool assertion__ = st->st_esp.keymat_len == encrypt_keymat_size + integ_keymat_size; if (!assertion__) { lsw_passert_fail((where_t ) { .func = __func__, .basename = "kernel.c" , .line = 1933}, "%s", "st->st_esp.keymat_len == encrypt_keymat_size + integ_keymat_size" ); } }; |
1934 | |
1935 | set_text_said(text_esp, &dst, esp_spi, &ip_protocol_esp); |
1936 | |
1937 | *said_next = said_boilerplate; |
1938 | said_next->spi = esp_spi; |
1939 | said_next->esatype = ET_ESP; |
1940 | said_next->replay_window = c->sa_replay_window; |
1941 | dbg("setting IPsec SA replay-window to %d", c->sa_replay_window){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("setting IPsec SA replay-window to %d", c-> sa_replay_window); } }; |
1942 | |
1943 | if (c->xfrmi != NULL((void*)0)) |
1944 | said_next->xfrm_if_id = c->xfrmi->if_id; |
1945 | |
1946 | if (!inbound && c->sa_tfcpad != 0 && !st->st_seen_no_tfc) { |
1947 | dbg("Enabling TFC at %d bytes (up to PMTU)", c->sa_tfcpad){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("Enabling TFC at %d bytes (up to PMTU)", c-> sa_tfcpad); } }; |
1948 | said_next->tfcpad = c->sa_tfcpad; |
1949 | } |
1950 | |
1951 | if (c->policy & POLICY_DECAP_DSCP((lset_t)1 << (POLICY_DECAP_DSCP_IX))) { |
1952 | dbg("Enabling Decap ToS/DSCP bits"){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("Enabling Decap ToS/DSCP bits"); } }; |
1953 | said_next->decap_dscp = TRUE1; |
1954 | } |
1955 | if (c->policy & POLICY_NOPMTUDISC((lset_t)1 << (POLICY_NOPMTUDISC_IX))) { |
1956 | dbg("Disabling Path MTU Discovery"){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("Disabling Path MTU Discovery"); } }; |
1957 | said_next->nopmtudisc = TRUE1; |
1958 | } |
1959 | |
1960 | said_next->integ = ta->ta_integ; |
1961 | #ifdef USE_SHA21 |
1962 | if (said_next->integ == &ike_alg_integ_sha2_256 && |
1963 | LIN(POLICY_SHA2_TRUNCBUG, c->policy)(((((lset_t)1 << (POLICY_SHA2_TRUNCBUG_IX))) & (c-> policy)) == (((lset_t)1 << (POLICY_SHA2_TRUNCBUG_IX))))) { |
1964 | if (kernel_ops->sha2_truncbug_support) { |
1965 | if (libreswan_fipsmode() == 1) { |
1966 | loglog(RC_LOG_SERIOUS, |
1967 | "Error: sha2-truncbug=yes is not allowed in FIPS mode"); |
1968 | goto fail; |
1969 | } |
1970 | dbg(" authalg converted for sha2 truncation at 96bits instead of IETF's mandated 128bits"){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log(" authalg converted for sha2 truncation at 96bits instead of IETF's mandated 128bits" ); } }; |
1971 | /* |
1972 | * We need to tell the kernel to mangle |
1973 | * the sha2_256, as instructed by the user |
1974 | */ |
1975 | said_next->integ = &ike_alg_integ_hmac_sha2_256_truncbug; |
1976 | } else { |
1977 | loglog(RC_LOG_SERIOUS, |
1978 | "Error: %s stack does not support sha2_truncbug=yes", |
1979 | kernel_ops->kern_name); |
1980 | goto fail; |
1981 | } |
1982 | } |
1983 | #endif |
1984 | said_next->authalg = said_next->integ->integ_ikev1_ah_transform; |
1985 | |
1986 | if (st->st_esp.attrs.transattrs.esn_enabled) { |
1987 | dbg("Enabling ESN"){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("Enabling ESN"); } }; |
1988 | said_next->esn = TRUE1; |
1989 | } |
1990 | |
1991 | /* |
1992 | * XXX: Assume SADB_ and ESP_ numbers match! Clearly |
1993 | * setting .compalg is wrong, don't yet trust |
1994 | * lower-level code to be right. |
1995 | */ |
1996 | said_next->encrypt = ta->ta_encrypt; |
1997 | said_next->compalg = said_next->encrypt->common.id[IKEv1_ESP_ID]; |
1998 | |
1999 | /* divide up keying material */ |
2000 | said_next->enckey = esp_dst_keymat; |
2001 | said_next->enckeylen = encrypt_keymat_size; /* BYTES */ |
2002 | said_next->authkey = esp_dst_keymat + encrypt_keymat_size; |
2003 | said_next->authkeylen = integ_keymat_size; /* BYTES */ |
2004 | |
2005 | said_next->mode = encap_oneshot; |
2006 | said_next->reqid = reqid_esp(c->spd.reqid); |
2007 | |
2008 | said_next->src.encap_port = encap_sport; |
2009 | said_next->dst.encap_port = encap_dport; |
2010 | said_next->encap_type = encap_type; |
2011 | said_next->natt_oa = &natt_oa; |
2012 | said_next->text_said = text_esp; |
2013 | |
2014 | DBG(DBG_PRIVATE, {{ if ((cur_debugging & (((lset_t)1 << (DBG_PRIVATE_IX ))))) { { DBG_dump("ESP enckey:", said_next->enckey, said_next ->enckeylen); DBG_dump("ESP authkey:", said_next->authkey , said_next->authkeylen); }; } } |
2015 | DBG_dump("ESP enckey:", said_next->enckey,{ if ((cur_debugging & (((lset_t)1 << (DBG_PRIVATE_IX ))))) { { DBG_dump("ESP enckey:", said_next->enckey, said_next ->enckeylen); DBG_dump("ESP authkey:", said_next->authkey , said_next->authkeylen); }; } } |
2016 | said_next->enckeylen);{ if ((cur_debugging & (((lset_t)1 << (DBG_PRIVATE_IX ))))) { { DBG_dump("ESP enckey:", said_next->enckey, said_next ->enckeylen); DBG_dump("ESP authkey:", said_next->authkey , said_next->authkeylen); }; } } |
2017 | DBG_dump("ESP authkey:", said_next->authkey,{ if ((cur_debugging & (((lset_t)1 << (DBG_PRIVATE_IX ))))) { { DBG_dump("ESP enckey:", said_next->enckey, said_next ->enckeylen); DBG_dump("ESP authkey:", said_next->authkey , said_next->authkeylen); }; } } |
2018 | said_next->authkeylen);{ if ((cur_debugging & (((lset_t)1 << (DBG_PRIVATE_IX ))))) { { DBG_dump("ESP enckey:", said_next->enckey, said_next ->enckeylen); DBG_dump("ESP authkey:", said_next->authkey , said_next->authkeylen); }; } } |
2019 | }){ if ((cur_debugging & (((lset_t)1 << (DBG_PRIVATE_IX ))))) { { DBG_dump("ESP enckey:", said_next->enckey, said_next ->enckeylen); DBG_dump("ESP authkey:", said_next->authkey , said_next->authkeylen); }; } }; |
2020 | |
2021 | if (inbound) { |
2022 | /* |
2023 | * set corresponding outbound SA. We can do this on |
2024 | * each SA in the bundle without harm. |
2025 | */ |
2026 | said_next->ref_peer = ref_peer; |
2027 | } else if (!outgoing_ref_set) { |
2028 | /* on outbound, pick up the SAref if not already done */ |
2029 | said_next->ref = ref_peer; |
2030 | outgoing_ref_set = TRUE1; |
2031 | } |
2032 | setup_esp_nic_offload(said_next, c, &nic_offload_fallback); |
2033 | |
2034 | bool_Bool ret = kernel_ops->add_sa(said_next, replace); |
2035 | |
2036 | if (!ret && nic_offload_fallback && |
2037 | said_next->nic_offload_dev != NULL((void*)0)) { |
2038 | /* Fallback to non-nic-offload crypto */ |
2039 | said_next->nic_offload_dev = NULL((void*)0); |
2040 | ret = kernel_ops->add_sa(said_next, replace); |
2041 | } |
2042 | |
2043 | /* scrub keys from memory */ |
2044 | memset(said_next->enckey, 0, said_next->enckeylen); |
2045 | memset(said_next->authkey, 0, said_next->authkeylen); |
2046 | |
2047 | if (!ret) |
2048 | goto fail; |
2049 | |
2050 | /* |
2051 | * SA refs will have been allocated for this SA. |
2052 | * The inner most one is interesting for the outgoing SA, |
2053 | * since we refer to it in the policy that we instantiate. |
2054 | */ |
2055 | if (new_ref_peer == IPSEC_SAREF_NULL((IPsecSAref_t)0u) && !inbound) { |
2056 | new_ref_peer = said_next->ref; |
2057 | if (kernel_ops->type != USE_XFRM && new_ref_peer == IPSEC_SAREF_NULL((IPsecSAref_t)0u)) |
2058 | new_ref_peer = IPSEC_SAREF_NA((IPsecSAref_t)0xffff0001); |
2059 | } |
2060 | if (!incoming_ref_set && inbound) { |
2061 | st->st_ref = said_next->ref; |
2062 | incoming_ref_set = TRUE1; |
2063 | } |
2064 | said_next++; |
2065 | |
2066 | encap_oneshot = ENCAPSULATION_MODE_TRANSPORT2; |
2067 | } |
2068 | |
2069 | /* set up AH SA, if any */ |
2070 | |
2071 | if (st->st_ah.present) { |
2072 | ipsec_spi_t ah_spi = |
2073 | inbound ? st->st_ah.our_spi : st->st_ah.attrs.spi; |
2074 | u_char *ah_dst_keymat = |
2075 | inbound ? st->st_ah.our_keymat : st->st_ah.peer_keymat; |
2076 | |
2077 | const struct integ_desc *integ = st->st_ah.attrs.transattrs.ta_integ; |
2078 | size_t keymat_size = integ->integ_keymat_size; |
2079 | int authalg = integ->integ_ikev1_ah_transform; |
2080 | if (authalg <= 0) { |
2081 | loglog(RC_LOG_SERIOUS, "%s not implemented", |
2082 | integ->common.fqn); |
2083 | goto fail; |
2084 | } |
2085 | |
2086 | passert(st->st_ah.keymat_len == keymat_size){ _Bool assertion__ = st->st_ah.keymat_len == keymat_size; if (!assertion__) { lsw_passert_fail((where_t) { .func = __func__ , .basename = "kernel.c" , .line = 2086}, "%s", "st->st_ah.keymat_len == keymat_size" ); } }; |
2087 | |
2088 | set_text_said(text_ah, &dst, ah_spi, &ip_protocol_ah); |
2089 | |
2090 | *said_next = said_boilerplate; |
2091 | said_next->spi = ah_spi; |
2092 | said_next->esatype = ET_AH; |
2093 | said_next->integ = integ; |
2094 | said_next->authalg = authalg; |
2095 | said_next->authkeylen = st->st_ah.keymat_len; |
2096 | said_next->authkey = ah_dst_keymat; |
2097 | said_next->mode = encap_oneshot; |
2098 | said_next->reqid = reqid_ah(c->spd.reqid); |
2099 | said_next->text_said = text_ah; |
2100 | said_next->replay_window = c->sa_replay_window; |
2101 | dbg("setting IPsec SA replay-window to %d", c->sa_replay_window){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("setting IPsec SA replay-window to %d", c-> sa_replay_window); } }; |
2102 | |
2103 | if (st->st_ah.attrs.transattrs.esn_enabled) { |
2104 | dbg("Enabling ESN"){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("Enabling ESN"); } }; |
2105 | said_next->esn = TRUE1; |
2106 | } |
2107 | |
2108 | DBG(DBG_PRIVATE, {{ if ((cur_debugging & (((lset_t)1 << (DBG_PRIVATE_IX ))))) { { DBG_dump("AH authkey:", said_next->authkey, said_next ->authkeylen); }; } } |
2109 | DBG_dump("AH authkey:", said_next->authkey,{ if ((cur_debugging & (((lset_t)1 << (DBG_PRIVATE_IX ))))) { { DBG_dump("AH authkey:", said_next->authkey, said_next ->authkeylen); }; } } |
2110 | said_next->authkeylen);{ if ((cur_debugging & (((lset_t)1 << (DBG_PRIVATE_IX ))))) { { DBG_dump("AH authkey:", said_next->authkey, said_next ->authkeylen); }; } } |
2111 | }){ if ((cur_debugging & (((lset_t)1 << (DBG_PRIVATE_IX ))))) { { DBG_dump("AH authkey:", said_next->authkey, said_next ->authkeylen); }; } }; |
2112 | |
2113 | if (inbound) { |
2114 | /* |
2115 | * set corresponding outbound SA. We can do this on |
2116 | * each SA in the bundle without harm. |
2117 | */ |
2118 | said_next->ref_peer = ref_peer; |
2119 | } else if (!outgoing_ref_set) { |
2120 | /* on outbound, pick up the SAref if not already done */ |
2121 | said_next->ref = ref_peer; |
2122 | outgoing_ref_set = TRUE1; /* outgoing_ref_set not subsequently used */ |
2123 | } |
2124 | |
2125 | if (!kernel_ops->add_sa(said_next, replace)) { |
2126 | /* scrub key from memory */ |
2127 | memset(said_next->authkey, 0, said_next->authkeylen); |
2128 | goto fail; |
2129 | } |
2130 | /* scrub key from memory */ |
2131 | memset(said_next->authkey, 0, said_next->authkeylen); |
2132 | |
2133 | /* |
2134 | * SA refs will have been allocated for this SA. |
2135 | * The inner most one is interesting for the outgoing SA, |
2136 | * since we refer to it in the policy that we instantiate. |
2137 | */ |
2138 | if (new_ref_peer == IPSEC_SAREF_NULL((IPsecSAref_t)0u) && !inbound) { |
2139 | new_ref_peer = said_next->ref; |
2140 | if (kernel_ops->type != USE_XFRM && new_ref_peer == IPSEC_SAREF_NULL((IPsecSAref_t)0u)) |
2141 | new_ref_peer = IPSEC_SAREF_NA((IPsecSAref_t)0xffff0001); |
2142 | } |
2143 | if (!incoming_ref_set && inbound) { |
2144 | st->st_ref = said_next->ref; |
2145 | incoming_ref_set = TRUE1; /* incoming_ref_set not subsequently used */ |
2146 | } |
2147 | said_next++; |
2148 | |
2149 | encap_oneshot = ENCAPSULATION_MODE_TRANSPORT2; /* encap_oneshot not subsequently used */ |
Value stored to 'encap_oneshot' is never read | |
2150 | } |
2151 | |
2152 | /* |
2153 | * Add an inbound eroute to enforce an arrival check. |
2154 | * |
2155 | * If inbound, |
2156 | * ??? and some more mysterious conditions, |
2157 | * Note reversed ends. |
2158 | * Not much to be done on failure. |
2159 | */ |
2160 | dbg("%s() is installing inbound eroute? inbound=%d owner=#%lu mode=%d",{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("%s() is installing inbound eroute? inbound=%d owner=#%lu mode=%d" , __func__, inbound, c->spd.eroute_owner, mode); } } |
2161 | __func__, inbound, c->spd.eroute_owner, mode){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("%s() is installing inbound eroute? inbound=%d owner=#%lu mode=%d" , __func__, inbound, c->spd.eroute_owner, mode); } }; |
2162 | if (inbound && c->spd.eroute_owner == SOS_NOBODY0) { |
2163 | dbg("%s() is installing inbound eroute", __func__){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("%s() is installing inbound eroute", __func__) ; } }; |
2164 | struct pfkey_proto_info proto_info[4]; |
2165 | int i = 0; |
2166 | |
2167 | /* |
2168 | * ??? why does this code care about |
2169 | * st->st_*.attrs.mode? |
2170 | * We have gone do some trouble to compute |
2171 | * "mode". And later code uses |
2172 | * "mode". |
2173 | */ |
2174 | if (st->st_ipcomp.present) { |
2175 | proto_info[i].proto = ip_protocol_comp.ipproto; |
2176 | proto_info[i].mode = |
2177 | st->st_ipcomp.attrs.mode; |
2178 | proto_info[i].reqid = reqid_ipcomp(c->spd.reqid); |
2179 | i++; |
2180 | } |
2181 | |
2182 | if (st->st_esp.present) { |
2183 | proto_info[i].proto = IPPROTO_ESPIPPROTO_ESP; |
2184 | proto_info[i].mode = |
2185 | st->st_esp.attrs.mode; |
2186 | proto_info[i].reqid = reqid_esp(c->spd.reqid); |
2187 | i++; |
2188 | } |
2189 | |
2190 | if (st->st_ah.present) { |
2191 | proto_info[i].proto = IPPROTO_AHIPPROTO_AH; |
2192 | proto_info[i].mode = |
2193 | st->st_ah.attrs.mode; |
2194 | proto_info[i].reqid = reqid_ah(c->spd.reqid); |
2195 | i++; |
2196 | } |
2197 | |
2198 | dbg("%s() before proto %d", __func__, proto_info[0].proto){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("%s() before proto %d", __func__, proto_info[0 ].proto); } }; |
2199 | proto_info[i].proto = 0; |
2200 | |
2201 | /* |
2202 | * ??? why is mode overwritten ONLY if true |
2203 | * (kernel_ops->inbound_eroute)? |
2204 | */ |
2205 | if (mode == ENCAPSULATION_MODE_TUNNEL1) { |
2206 | proto_info[0].mode = |
2207 | ENCAPSULATION_MODE_TUNNEL1; |
2208 | for (i = 1; proto_info[i].proto; i++) |
2209 | proto_info[i].mode = |
2210 | ENCAPSULATION_MODE_TRANSPORT2; |
2211 | } |
2212 | dbg("%s() after proto %d", __func__, proto_info[0].proto){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("%s() after proto %d", __func__, proto_info[0] .proto); } }; |
2213 | |
2214 | uint32_t xfrm_if_id = c->xfrmi != NULL((void*)0) ? |
2215 | c->xfrmi->if_id : 0; |
2216 | |
2217 | dbg("%s() calling raw_eroute backwards (i.e., inbound)", __func__){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("%s() calling raw_eroute backwards (i.e., inbound)" , __func__); } }; |
2218 | /* MCR - should be passed a spd_eroute structure here */ |
2219 | /* note: this and that are intentionally reversed */ |
2220 | if (!raw_eroute(&c->spd.that.host_addr, /* this_host */ |
2221 | &c->spd.that.client, /* this_client */ |
2222 | &c->spd.this.host_addr, /* that_host */ |
2223 | &c->spd.this.client, /* that_client */ |
2224 | inner_spi, /* current spi - might not be used? */ |
2225 | inner_spi, /* new spi */ |
2226 | proto, /* SA proto */ |
2227 | c->spd.this.protocol, /* transport_proto */ |
2228 | esatype, /* esatype */ |
2229 | proto_info, /* " */ |
2230 | deltatime(0), /* lifetime */ |
2231 | calculate_sa_prio(c, FALSE0), /* priority */ |
2232 | &c->sa_marks, /* IPsec SA marks */ |
2233 | xfrm_if_id, |
2234 | ERO_ADD_INBOUND, /* op */ |
2235 | "add inbound", /* opname */ |
2236 | st->st_connection->policy_label)) |
2237 | { |
2238 | libreswan_log("raw_eroute() in setup_half_ipsec_sa() failed to add inbound")loglog(RC_LOG, "raw_eroute() in setup_half_ipsec_sa() failed to add inbound" ); |
2239 | } |
2240 | } |
2241 | |
2242 | /* If there are multiple SPIs, group them. */ |
2243 | |
2244 | if (kernel_ops->grp_sa != NULL((void*)0) && said_next > &said[1]) { |
2245 | struct kernel_sa *s; |
2246 | |
2247 | /* |
2248 | * group SAs, two at a time, inner to outer (backwards in |
2249 | * said[]) |
2250 | * |
2251 | * The grouping is by pairs. So if said[] contains |
2252 | * ah esp ipip, |
2253 | * |
2254 | * the grouping would be ipip:esp, esp:ah. |
2255 | */ |
2256 | for (s = said; s < said_next - 1; s++) { |
2257 | dbg("grouping %s (ref=%u) and %s (ref=%u)",{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("grouping %s (ref=%u) and %s (ref=%u)", s[0].text_said , s[0].ref, s[1].text_said, s[1].ref); } } |
2258 | s[0].text_said, s[0].ref,{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("grouping %s (ref=%u) and %s (ref=%u)", s[0].text_said , s[0].ref, s[1].text_said, s[1].ref); } } |
2259 | s[1].text_said, s[1].ref){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("grouping %s (ref=%u) and %s (ref=%u)", s[0].text_said , s[0].ref, s[1].text_said, s[1].ref); } }; |
2260 | if (!kernel_ops->grp_sa(s + 1, s)) { |
2261 | libreswan_log("grp_sa failed")loglog(RC_LOG, "grp_sa failed"); |
2262 | goto fail; |
2263 | } |
2264 | } |
2265 | /* could update said, but it will not be used */ |
2266 | } |
2267 | |
2268 | if (new_ref_peer != IPSEC_SAREF_NULL((IPsecSAref_t)0u)) |
2269 | st->st_ref_peer = new_ref_peer; |
2270 | |
2271 | /* if the impaired is set, pretend this fails */ |
2272 | if (impair.sa_creation) { |
2273 | DBG_log("Impair SA creation is set, pretending to fail"); |
2274 | goto fail; |
2275 | } |
2276 | return TRUE1; |
2277 | |
2278 | fail: |
2279 | { |
2280 | libreswan_log("setup_half_ipsec_sa() hit fail:")loglog(RC_LOG, "setup_half_ipsec_sa() hit fail:"); |
2281 | /* undo the done SPIs */ |
2282 | while (said_next-- != said) { |
2283 | if (said_next->proto != 0) { |
2284 | (void) del_spi(said_next->spi, |
2285 | said_next->proto, |
2286 | &src, said_next->dst.address); |
2287 | } |
2288 | } |
2289 | return FALSE0; |
2290 | } |
2291 | } |
2292 | |
2293 | static bool_Bool teardown_half_ipsec_sa(struct state *st, bool_Bool inbound) |
2294 | { |
2295 | /* Delete any AH, ESP, and IP in IP SPIs. */ |
2296 | |
2297 | struct connection *const c = st->st_connection; |
2298 | |
2299 | /* |
2300 | * If we have a new address in c->spd.that.host_addr, |
2301 | * we are the initiator, have been redirected, |
2302 | * and yet this routine must use the old address. |
2303 | * |
2304 | * We point effective_that_host_address to the appropriate address. |
2305 | */ |
2306 | |
2307 | const ip_address *effective_that_host_addr = &c->spd.that.host_addr; |
2308 | |
2309 | if (!sameaddr(&st->st_remote_endpoint, effective_that_host_addr) && |
2310 | address_is_specified(&c->temp_vars.redirect_ip)) { |
2311 | effective_that_host_addr = &st->st_remote_endpoint; |
2312 | } |
2313 | |
2314 | /* ??? CLANG 3.5 thinks that c might be NULL */ |
2315 | if (inbound && c->spd.eroute_owner == SOS_NOBODY0 && |
2316 | !raw_eroute(effective_that_host_addr, |
2317 | &c->spd.that.client, |
2318 | &c->spd.this.host_addr, |
2319 | &c->spd.this.client, |
2320 | SPI_PASS256, SPI_PASS256, |
2321 | c->ipsec_mode == ENCAPSULATION_MODE_TRANSPORT2 ? |
2322 | &ip_protocol_esp : NULL((void*)0), |
2323 | c->spd.this.protocol, |
2324 | c->ipsec_mode == ENCAPSULATION_MODE_TRANSPORT2 ? |
2325 | ET_ESP : ET_UNSPEC, |
2326 | null_proto_info, |
2327 | deltatime(0), |
2328 | calculate_sa_prio(c, FALSE0), |
2329 | &c->sa_marks, |
2330 | 0, /* xfrm_if_id. needed to tear down? */ |
2331 | ERO_DEL_INBOUND, |
2332 | "delete inbound", |
2333 | c->policy_label)) |
2334 | { |
2335 | libreswan_log("raw_eroute in teardown_half_ipsec_sa() failed to delete inbound")loglog(RC_LOG, "raw_eroute in teardown_half_ipsec_sa() failed to delete inbound" ); |
2336 | } |
2337 | |
2338 | /* collect each proto SA that needs deleting */ |
2339 | |
2340 | struct { |
2341 | const struct ip_protocol *proto; |
2342 | const struct ipsec_proto_info *info; |
2343 | } protos[4]; /* at most 3 entries + terminator */ |
2344 | int i = 0; |
2345 | |
2346 | if (st->st_ah.present) { |
2347 | protos[i].proto = &ip_protocol_ah; |
2348 | protos[i].info = &st->st_ah; |
2349 | i++; |
2350 | } |
2351 | |
2352 | if (st->st_esp.present) { |
2353 | protos[i].proto = &ip_protocol_esp; |
2354 | protos[i].info = &st->st_esp; |
2355 | i++; |
2356 | } |
2357 | |
2358 | if (st->st_ipcomp.present) { |
2359 | protos[i].proto = &ip_protocol_comp; |
2360 | protos[i].info = &st->st_ipcomp; |
2361 | i++; |
2362 | } |
2363 | |
2364 | /* |
2365 | * If the SAs have been grouped, deleting any one will do: |
2366 | * we just delete the first one found (protos[0]). |
2367 | */ |
2368 | if (kernel_ops->grp_sa != NULL((void*)0) && i > 0) |
2369 | i = 1; |
2370 | |
2371 | protos[i].proto = NULL((void*)0); |
2372 | |
2373 | /* delete each proto that needs deleting */ |
2374 | bool_Bool result = TRUE1; |
2375 | |
2376 | for (i = 0; protos[i].proto != NULL((void*)0); i++) { |
2377 | const struct ip_protocol *proto = protos[i].proto; |
2378 | ipsec_spi_t spi; |
2379 | const ip_address *src, *dst; |
2380 | |
2381 | if (inbound) { |
2382 | spi = protos[i].info->our_spi; |
2383 | src = effective_that_host_addr; |
2384 | dst = &c->spd.this.host_addr; |
2385 | } else { |
2386 | spi = protos[i].info->attrs.spi; |
2387 | src = &c->spd.this.host_addr; |
2388 | dst = effective_that_host_addr; |
2389 | } |
2390 | |
2391 | result &= del_spi(spi, proto, src, dst); |
2392 | } |
2393 | |
2394 | return result; |
2395 | } |
2396 | |
2397 | static event_callback_routine kernel_process_msg_cb; |
2398 | |
2399 | static void kernel_process_msg_cb(evutil_socket_tint fd, |
2400 | const short event UNUSED__attribute__ ((unused)), void *arg) |
2401 | { |
2402 | const struct kernel_ops *kernel_ops = arg; |
2403 | |
2404 | dbg(" %s process netlink message", __func__){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log(" %s process netlink message", __func__); } }; |
2405 | threadtime_t start = threadtime_start(); |
2406 | kernel_ops->process_msg(fd); |
2407 | threadtime_stop(&start, SOS_NOBODY0, "kernel message"); |
2408 | pexpect_reset_globals()log_pexpect_reset_globals((where_t) { .func = __func__, .basename = "kernel.c" , .line = 2408}); |
2409 | } |
2410 | |
2411 | static global_timer_cb kernel_process_queue_cb; |
2412 | |
2413 | static void kernel_process_queue_cb(struct fd *unused_whackfd UNUSED__attribute__ ((unused))) |
2414 | { |
2415 | if (pexpect(kernel_ops->process_queue != NULL)({ _Bool assertion__ = kernel_ops->process_queue != ((void *)0); if (!assertion__) { log_pexpect((where_t) { .func = __func__ , .basename = "kernel.c" , .line = 2415}, "%s", "kernel_ops->process_queue != NULL" ); } assertion__; })) { |
2416 | kernel_ops->process_queue(); |
2417 | } |
2418 | pexpect_reset_globals()log_pexpect_reset_globals((where_t) { .func = __func__, .basename = "kernel.c" , .line = 2418}); |
2419 | } |
2420 | |
2421 | /* keep track of kernel version */ |
2422 | static char kversion[256]; |
2423 | |
2424 | const struct kernel_ops *kernel_ops = |
2425 | #ifdef XFRM_SUPPORT1 |
2426 | &xfrm_kernel_ops |
2427 | #endif |
2428 | #ifdef BSD_KAME |
2429 | &bsdkame_kernel_ops |
2430 | #endif |
2431 | ; |
2432 | |
2433 | deltatime_t bare_shunt_interval = DELTATIME_INIT(SHUNT_SCAN_INTERVAL){ .dt = { .tv_sec = ((2 * 10)), } }; |
2434 | |
2435 | static void kernel_scan_shunts(struct fd *unused_whackfd UNUSED__attribute__ ((unused))) |
2436 | { |
2437 | kernel_ops->scan_shunts(); |
2438 | } |
2439 | |
2440 | void init_kernel(void) |
2441 | { |
2442 | struct utsname un; |
2443 | |
2444 | /* get kernel version */ |
2445 | uname(&un); |
2446 | jam_str(kversion, sizeof(kversion), un.release); |
2447 | |
2448 | switch (kernel_ops->type) { |
2449 | #if defined(XFRM_SUPPORT1) |
2450 | case USE_XFRM: |
2451 | { |
2452 | struct stat buf; |
2453 | if (stat("/proc/sys/net/core/xfrm_acq_expires", &buf) != 0) { |
2454 | libreswan_log("No XFRM kernel support detected, missing /proc/sys/net/core/xfrm_acq_expires")loglog(RC_LOG, "No XFRM kernel support detected, missing /proc/sys/net/core/xfrm_acq_expires" ); |
2455 | exit_pluto(PLUTO_EXIT_KERNEL_FAIL); |
2456 | } |
2457 | libreswan_log("Using Linux XFRM/NETKEY IPsec kernel support code on %s",loglog(RC_LOG, "Using Linux XFRM/NETKEY IPsec kernel support code on %s" , kversion) |
2458 | kversion)loglog(RC_LOG, "Using Linux XFRM/NETKEY IPsec kernel support code on %s" , kversion); |
2459 | break; |
2460 | } |
2461 | #endif |
2462 | |
2463 | #if defined(BSD_KAME) |
2464 | case USE_BSDKAME: |
2465 | libreswan_log("Using BSD/KAME IPsec interface code on %s",loglog(RC_LOG, "Using BSD/KAME IPsec interface code on %s", kversion ) |
2466 | kversion)loglog(RC_LOG, "Using BSD/KAME IPsec interface code on %s", kversion ); |
2467 | break; |
2468 | #endif |
2469 | |
2470 | default: |
2471 | libreswan_log("FATAL: kernel interface '%s' not available",loglog(RC_LOG, "FATAL: kernel interface '%s' not available", enum_name (&kern_interface_names, kernel_ops->type)) |
2472 | enum_name(&kern_interface_names,loglog(RC_LOG, "FATAL: kernel interface '%s' not available", enum_name (&kern_interface_names, kernel_ops->type)) |
2473 | kernel_ops->type))loglog(RC_LOG, "FATAL: kernel interface '%s' not available", enum_name (&kern_interface_names, kernel_ops->type)); |
2474 | exit_pluto(PLUTO_EXIT_KERNEL_FAIL); |
2475 | } |
2476 | |
2477 | if (kernel_ops->init != NULL((void*)0)) |
2478 | kernel_ops->init(); |
2479 | |
2480 | /* Add the port bypass polcies */ |
2481 | |
2482 | if (kernel_ops->v6holes != NULL((void*)0)) { |
2483 | if (!kernel_ops->v6holes()) { |
2484 | libreswan_log("Could not add the ICMP bypass policies")loglog(RC_LOG, "Could not add the ICMP bypass policies"); |
2485 | exit_pluto(PLUTO_EXIT_KERNEL_FAIL); |
2486 | } |
2487 | } |
2488 | |
2489 | /* register SA types that we can negotiate */ |
2490 | if (kernel_ops->pfkey_register != NULL((void*)0)) |
2491 | kernel_ops->pfkey_register(); |
2492 | |
2493 | enable_periodic_timer(EVENT_SHUNT_SCAN, kernel_scan_shunts, |
2494 | bare_shunt_interval); |
2495 | |
2496 | dbg("setup kernel fd callback"){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("setup kernel fd callback"); } }; |
2497 | |
2498 | if (kernel_ops->async_fdp != NULL((void*)0)) |
2499 | /* Note: kernel_ops is const but pluto_event_add cannot know that */ |
2500 | add_fd_read_event_handler(*kernel_ops->async_fdp, kernel_process_msg_cb, |
2501 | (void *)kernel_ops, "KERNEL_XRM_FD"); |
2502 | |
2503 | if (kernel_ops->route_fdp != NULL((void*)0) && *kernel_ops->route_fdp > NULL_FD(-1)) { |
2504 | add_fd_read_event_handler(*kernel_ops->route_fdp, kernel_process_msg_cb, |
2505 | (void *)kernel_ops, "KERNEL_ROUTE_FD"); |
2506 | } |
2507 | |
2508 | if (kernel_ops->process_queue != NULL((void*)0)) { |
2509 | /* |
2510 | * AA_2015 this is untested code. only for non xfrm ??? |
2511 | * It seems in klips we should, besides kernel_process_msg, |
2512 | * call process_queue periodically. Does the order |
2513 | * matter? |
2514 | */ |
2515 | enable_periodic_timer(EVENT_PROCESS_KERNEL_QUEUE, |
2516 | kernel_process_queue_cb, |
2517 | deltatime(KERNEL_PROCESS_Q_PERIOD1)); |
2518 | } |
2519 | } |
2520 | |
2521 | void show_kernel_interface(struct show *s) |
2522 | { |
2523 | if (kernel_ops != NULL((void*)0)) { |
2524 | show_comment(s, "using kernel interface: %s", |
2525 | kernel_ops->kern_name); |
2526 | } |
2527 | } |
2528 | |
2529 | /* |
2530 | * see if the attached connection refers to an older state. |
2531 | * if it does, then initiate this state with the appropriate outgoing |
2532 | * references, such that we won't break any userland applications |
2533 | * that are using the conn with REFINFO. |
2534 | */ |
2535 | static void look_for_replacement_state(struct state *st) |
2536 | { |
2537 | struct connection *c = st->st_connection; |
2538 | struct state *ost = state_with_serialno(c->newest_ipsec_sa); |
2539 | |
2540 | if (DBGP(DBG_BASE)(cur_debugging & (((lset_t)1 << (DBG_BASE_IX))))) { |
2541 | DBG_log("checking if this is a replacement state"); |
2542 | DBG_log(" st=%p ost=%p st->serialno=#%lu ost->serialno=#%lu", |
2543 | st, ost, st->st_serialno, |
2544 | ost == NULL((void*)0) ? 0 : ost->st_serialno); |
2545 | } |
2546 | |
2547 | if (ost != NULL((void*)0) && ost != st && ost->st_serialno != st->st_serialno) { |
2548 | /* |
2549 | * then there is an old state associated, and it is |
2550 | * different then the new one. |
2551 | */ |
2552 | dbg("keeping ref_peer=%" PRIu32 " during rekey", ost->st_ref_peer){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("keeping ref_peer=%" "u" " during rekey", ost-> st_ref_peer); } }; |
2553 | st->st_ref_peer = ost->st_ref_peer; |
2554 | } |
2555 | } |
2556 | |
2557 | /* |
2558 | * Note: install_inbound_ipsec_sa is only used by the Responder. |
2559 | * The Responder will subsequently use install_ipsec_sa for the outbound. |
2560 | * The Initiator uses install_ipsec_sa to install both at once. |
2561 | */ |
2562 | bool_Bool install_inbound_ipsec_sa(struct state *st) |
2563 | { |
2564 | struct connection *const c = st->st_connection; |
2565 | |
2566 | /* |
2567 | * If our peer has a fixed-address client, check if we already |
2568 | * have a route for that client that conflicts. We will take this |
2569 | * as proof that that route and the connections using it are |
2570 | * obsolete and should be eliminated. Interestingly, this is |
2571 | * the only case in which we can tell that a connection is obsolete. |
2572 | */ |
2573 | passert(c->kind == CK_PERMANENT || c->kind == CK_INSTANCE){ _Bool assertion__ = c->kind == CK_PERMANENT || c->kind == CK_INSTANCE; if (!assertion__) { lsw_passert_fail((where_t ) { .func = __func__, .basename = "kernel.c" , .line = 2573}, "%s", "c->kind == CK_PERMANENT || c->kind == CK_INSTANCE" ); } }; |
2574 | if (c->spd.that.has_client) { |
2575 | for (;; ) { |
2576 | struct spd_route *esr; /* value is ignored */ |
2577 | struct connection *o = route_owner(c, &c->spd, &esr, |
2578 | NULL((void*)0), NULL((void*)0)); |
2579 | |
2580 | if (o == NULL((void*)0) || c == o) |
2581 | break; /* nobody interesting has a route */ |
2582 | |
2583 | /* note: we ignore the client addresses at this end */ |
2584 | if (sameaddr(&o->spd.that.host_addr, |
2585 | &c->spd.that.host_addr) && |
2586 | o->interface == c->interface) |
2587 | break; /* existing route is compatible */ |
2588 | |
2589 | if (kernel_ops->overlap_supported) { |
2590 | /* |
2591 | * Both are transport mode, allow overlapping. |
2592 | * [bart] not sure if this is actually |
2593 | * intended, but am leaving it in to make it |
2594 | * behave like before |
2595 | */ |
2596 | if (!LIN(POLICY_TUNNEL, c->policy | o->policy)(((((lset_t)1 << (POLICY_TUNNEL_IX))) & (c->policy | o->policy)) == (((lset_t)1 << (POLICY_TUNNEL_IX)) ))) |
2597 | break; |
2598 | |
2599 | /* Both declared that overlapping is OK. */ |
2600 | if (LIN(POLICY_OVERLAPIP, c->policy & o->policy)(((((lset_t)1 << (POLICY_OVERLAPIP_IX))) & (c->policy & o->policy)) == (((lset_t)1 << (POLICY_OVERLAPIP_IX ))))) |
2601 | break; |
2602 | } |
2603 | |
2604 | address_buf b; |
2605 | connection_buf cib; |
2606 | log_state(RC_LOG_SERIOUS, st, |
2607 | "route to peer's client conflicts with "PRI_CONNECTION"\"%s\"%s"" %s; releasing old connection to free the route", |
2608 | pri_connection(o, &cib)(o)->name, str_connection_instance(o, &cib), |
2609 | str_address_sensitive(&o->spd.that.host_addr, &b)); |
2610 | /* |
2611 | * XXX: Assume this call shouldn't log to |
2612 | * whack(?). While ST has an attached whack, |
2613 | * the global whack, which this code would |
2614 | * have been using, detached long-ago. |
2615 | */ |
2616 | release_connection(o, false0, null_fd((struct fd *) ((void*)0))); |
2617 | } |
2618 | } |
2619 | |
2620 | dbg("install_inbound_ipsec_sa() checking if we can route"){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("install_inbound_ipsec_sa() checking if we can route" ); } }; |
2621 | /* check that we will be able to route and eroute */ |
2622 | switch (could_route(c, st->st_logger)) { |
2623 | case route_easy: |
2624 | case route_nearconflict: |
2625 | dbg(" routing is easy, or has resolvable near-conflict"){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log(" routing is easy, or has resolvable near-conflict" ); } }; |
2626 | break; |
2627 | |
2628 | case route_unnecessary: |
2629 | /* |
2630 | * in this situation, we should look and see if there is |
2631 | * a state that our connection references, that we are |
2632 | * in fact replacing. |
2633 | */ |
2634 | break; |
2635 | |
2636 | default: |
2637 | return FALSE0; |
2638 | } |
2639 | |
2640 | look_for_replacement_state(st); |
2641 | |
2642 | /* |
2643 | * we now have to set up the outgoing SA first, so that |
2644 | * we can refer to it in the incoming SA. |
2645 | */ |
2646 | if (st->st_ref_peer == IPSEC_SAREF_NULL((IPsecSAref_t)0u) && !st->st_outbound_done) { |
2647 | dbg("installing outgoing SA now as ref_peer=%u", st->st_ref_peer){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("installing outgoing SA now as ref_peer=%u", st ->st_ref_peer); } }; |
2648 | if (!setup_half_ipsec_sa(st, FALSE0)) { |
2649 | DBG_log("failed to install outgoing SA: %u", |
2650 | st->st_ref_peer); |
2651 | return FALSE0; |
2652 | } |
2653 | |
2654 | st->st_outbound_done = TRUE1; |
2655 | } |
2656 | dbg("outgoing SA has ref_peer=%u", st->st_ref_peer){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("outgoing SA has ref_peer=%u", st->st_ref_peer ); } }; |
2657 | |
2658 | /* (attempt to) actually set up the SAs */ |
2659 | |
2660 | return setup_half_ipsec_sa(st, TRUE1); |
2661 | } |
2662 | |
2663 | /* Install a route and then a prospective shunt eroute or an SA group eroute. |
2664 | * Assumption: could_route gave a go-ahead. |
2665 | * Any SA Group must have already been created. |
2666 | * On failure, steps will be unwound. |
2667 | */ |
2668 | bool_Bool route_and_eroute(struct connection *c, |
2669 | struct spd_route *sr, |
2670 | struct state *st) |
2671 | { |
2672 | dbg("route_and_eroute() for proto %d, and source port %d dest port %d",{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("route_and_eroute() for proto %d, and source port %d dest port %d" , sr->this.protocol, sr->this.port, sr->that.port); } } |
2673 | sr->this.protocol, sr->this.port, sr->that.port){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("route_and_eroute() for proto %d, and source port %d dest port %d" , sr->this.protocol, sr->this.port, sr->that.port); } }; |
2674 | setportof(htons(sr->this.port), &sr->this.client.addr){ *(&sr->this.client.addr) = set_endpoint_hport((& sr->this.client.addr), ntohs(htons(sr->this.port))); }; |
2675 | setportof(htons(sr->that.port), &sr->that.client.addr){ *(&sr->that.client.addr) = set_endpoint_hport((& sr->that.client.addr), ntohs(htons(sr->that.port))); }; |
2676 | |
2677 | struct spd_route *esr, *rosr; |
2678 | struct connection *ero, |
2679 | *ro = route_owner(c, sr, &rosr, &ero, &esr); /* who, if anyone, owns our eroute? */ |
2680 | |
2681 | dbg("route_and_eroute with c: %s (next: %s) ero:%s esr:{%p} ro:%s rosr:{%p} and state: #%lu",{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("route_and_eroute with c: %s (next: %s) ero:%s esr:{%p} ro:%s rosr:{%p} and state: #%lu" , c->name, (c->policy_next ? c->policy_next->name : "none"), ero == ((void*)0) ? "null" : ero->name, esr, ro == ((void*)0) ? "null" : ro->name, rosr, st == ((void*)0) ? 0 : st->st_serialno); } } |
2682 | c->name,{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("route_and_eroute with c: %s (next: %s) ero:%s esr:{%p} ro:%s rosr:{%p} and state: #%lu" , c->name, (c->policy_next ? c->policy_next->name : "none"), ero == ((void*)0) ? "null" : ero->name, esr, ro == ((void*)0) ? "null" : ro->name, rosr, st == ((void*)0) ? 0 : st->st_serialno); } } |
2683 | (c->policy_next ? c->policy_next->name : "none"),{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("route_and_eroute with c: %s (next: %s) ero:%s esr:{%p} ro:%s rosr:{%p} and state: #%lu" , c->name, (c->policy_next ? c->policy_next->name : "none"), ero == ((void*)0) ? "null" : ero->name, esr, ro == ((void*)0) ? "null" : ro->name, rosr, st == ((void*)0) ? 0 : st->st_serialno); } } |
2684 | ero == NULL ? "null" : ero->name,{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("route_and_eroute with c: %s (next: %s) ero:%s esr:{%p} ro:%s rosr:{%p} and state: #%lu" , c->name, (c->policy_next ? c->policy_next->name : "none"), ero == ((void*)0) ? "null" : ero->name, esr, ro == ((void*)0) ? "null" : ro->name, rosr, st == ((void*)0) ? 0 : st->st_serialno); } } |
2685 | esr,{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("route_and_eroute with c: %s (next: %s) ero:%s esr:{%p} ro:%s rosr:{%p} and state: #%lu" , c->name, (c->policy_next ? c->policy_next->name : "none"), ero == ((void*)0) ? "null" : ero->name, esr, ro == ((void*)0) ? "null" : ro->name, rosr, st == ((void*)0) ? 0 : st->st_serialno); } } |
2686 | ro == NULL ? "null" : ro->name,{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("route_and_eroute with c: %s (next: %s) ero:%s esr:{%p} ro:%s rosr:{%p} and state: #%lu" , c->name, (c->policy_next ? c->policy_next->name : "none"), ero == ((void*)0) ? "null" : ero->name, esr, ro == ((void*)0) ? "null" : ro->name, rosr, st == ((void*)0) ? 0 : st->st_serialno); } } |
2687 | rosr,{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("route_and_eroute with c: %s (next: %s) ero:%s esr:{%p} ro:%s rosr:{%p} and state: #%lu" , c->name, (c->policy_next ? c->policy_next->name : "none"), ero == ((void*)0) ? "null" : ero->name, esr, ro == ((void*)0) ? "null" : ro->name, rosr, st == ((void*)0) ? 0 : st->st_serialno); } } |
2688 | st == NULL ? 0 : st->st_serialno){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("route_and_eroute with c: %s (next: %s) ero:%s esr:{%p} ro:%s rosr:{%p} and state: #%lu" , c->name, (c->policy_next ? c->policy_next->name : "none"), ero == ((void*)0) ? "null" : ero->name, esr, ro == ((void*)0) ? "null" : ro->name, rosr, st == ((void*)0) ? 0 : st->st_serialno); } }; |
2689 | |
2690 | /* look along the chain of policies for same one */ |
2691 | |
2692 | /* we should look for dest port as well? */ |
2693 | /* ports are now switched to the ones in this.client / that.client ??????? */ |
2694 | /* but port set is sr->this.port and sr.that.port ! */ |
2695 | struct bare_shunt **bspp = (ero == NULL((void*)0)) ? |
2696 | bare_shunt_ptr(&sr->this.client, &sr->that.client, sr->this.protocol) : |
2697 | NULL((void*)0); |
2698 | |
2699 | /* install the eroute */ |
2700 | |
2701 | bool_Bool eroute_installed = FALSE0; |
2702 | |
2703 | #ifdef IPSEC_CONNECTION_LIMIT |
2704 | bool_Bool new_eroute = FALSE0; |
2705 | #endif |
2706 | |
2707 | passert(bspp == NULL || ero == NULL){ _Bool assertion__ = bspp == ((void*)0) || ero == ((void*)0) ; if (!assertion__) { lsw_passert_fail((where_t) { .func = __func__ , .basename = "kernel.c" , .line = 2707}, "%s", "bspp == NULL || ero == NULL" ); } }; /* only one non-NULL */ |
2708 | |
2709 | if (bspp != NULL((void*)0) || ero != NULL((void*)0)) { |
2710 | dbg("we are replacing an eroute"){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("we are replacing an eroute"); } }; |
2711 | /* if no state provided, then install a shunt for later */ |
2712 | if (st == NULL((void*)0)) { |
2713 | eroute_installed = shunt_eroute(c, sr, |
2714 | RT_ROUTED_PROSPECTIVE, |
2715 | ERO_REPLACE, |
2716 | "replace"); |
2717 | } else { |
2718 | eroute_installed = sag_eroute(st, sr, ERO_REPLACE, |
2719 | "replace"); |
2720 | } |
2721 | |
2722 | /* remember to free bspp if we make it out of here alive */ |
2723 | } else { |
2724 | /* we're adding an eroute */ |
2725 | #ifdef IPSEC_CONNECTION_LIMIT |
2726 | if (num_ipsec_eroute == IPSEC_CONNECTION_LIMIT) { |
2727 | loglog(RC_LOG_SERIOUS, |
2728 | "Maximum number of IPsec connections reached (%d)", |
2729 | IPSEC_CONNECTION_LIMIT); |
2730 | return FALSE0; |
2731 | } |
2732 | new_eroute = TRUE1; |
2733 | #endif |
2734 | |
2735 | /* if no state provided, then install a shunt for later */ |
2736 | if (st == NULL((void*)0)) { |
2737 | eroute_installed = shunt_eroute(c, sr, |
2738 | RT_ROUTED_PROSPECTIVE, |
2739 | ERO_ADD, "add"); |
2740 | } else { |
2741 | eroute_installed = sag_eroute(st, sr, ERO_ADD, "add"); |
2742 | } |
2743 | } |
2744 | |
2745 | /* notify the firewall of a new tunnel */ |
2746 | |
2747 | bool_Bool firewall_notified = FALSE0; |
2748 | |
2749 | if (eroute_installed) { |
2750 | /* |
2751 | * do we have to notify the firewall? |
2752 | * Yes, if we are installing |
2753 | * a tunnel eroute and the firewall wasn't notified |
2754 | * for a previous tunnel with the same clients. Any Previous |
2755 | * tunnel would have to be for our connection, so the actual |
2756 | * test is simple. |
2757 | */ |
2758 | firewall_notified = st == NULL((void*)0) || /* not a tunnel eroute */ |
2759 | sr->eroute_owner != SOS_NOBODY0 || /* already notified */ |
2760 | do_command(c, sr, "up", st); /* go ahead and notify */ |
2761 | } |
2762 | |
2763 | /* install the route */ |
2764 | |
2765 | bool_Bool route_installed = FALSE0; |
2766 | |
2767 | dbg("route_and_eroute: firewall_notified: %s",{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("route_and_eroute: firewall_notified: %s", firewall_notified ? "true" : "false"); } } |
2768 | firewall_notified ? "true" : "false"){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("route_and_eroute: firewall_notified: %s", firewall_notified ? "true" : "false"); } }; |
2769 | if (!firewall_notified) { |
2770 | /* we're in trouble -- don't do routing */ |
2771 | } else if (ro == NULL((void*)0)) { |
2772 | /* a new route: no deletion required, but preparation is */ |
2773 | if (!do_command(c, sr, "prepare", st)) |
2774 | dbg("prepare command returned an error"){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("prepare command returned an error"); } }; |
2775 | route_installed = do_command(c, sr, "route", st); |
2776 | if (!route_installed) |
2777 | dbg("route command returned an error"){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("route command returned an error"); } }; |
2778 | } else if (routed(sr->routing)((sr->routing) > RT_UNROUTED_HOLD) || |
2779 | routes_agree(ro, c)((ro)->interface->ip_dev == (c)->interface->ip_dev && sameaddr(&(ro)->spd.this.host_nexthop, & (c)->spd.this.host_nexthop))) { |
2780 | route_installed = TRUE1; /* nothing to be done */ |
2781 | } else { |
2782 | /* |
2783 | * Some other connection must own the route |
2784 | * and the route must disagree. But since could_route |
2785 | * must have allowed our stealing it, we'll do so. |
2786 | * |
2787 | * A feature of LINUX allows us to install the new route |
2788 | * before deleting the old if the nexthops differ. |
2789 | * This reduces the "window of vulnerability" when packets |
2790 | * might flow in the clear. |
2791 | */ |
2792 | if (sameaddr(&sr->this.host_nexthop, |
2793 | &esr->this.host_nexthop)) { |
2794 | if (!do_command(ro, sr, "unroute", st)) { |
2795 | dbg("unroute command returned an error"){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("unroute command returned an error"); } }; |
2796 | } |
2797 | route_installed = do_command(c, sr, "route", st); |
2798 | if (!route_installed) |
2799 | dbg("route command returned an error"){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("route command returned an error"); } }; |
2800 | } else { |
2801 | route_installed = do_command(c, sr, "route", st); |
2802 | if (!route_installed) |
2803 | dbg("route command returned an error"){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("route command returned an error"); } }; |
2804 | |
2805 | if (!do_command(ro, sr, "unroute", st)) { |
2806 | dbg("unroute command returned an error"){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("unroute command returned an error"); } }; |
2807 | } |
2808 | } |
2809 | |
2810 | /* record unrouting */ |
2811 | if (route_installed) { |
2812 | do { |
2813 | dbg("installed route: ro name=%s, rosr->routing=%d", ro->name,{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("installed route: ro name=%s, rosr->routing=%d" , ro->name, rosr->routing); } } |
2814 | rosr->routing){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("installed route: ro name=%s, rosr->routing=%d" , ro->name, rosr->routing); } }; |
2815 | pexpect(!erouted(rosr->routing))({ _Bool assertion__ = !((rosr->routing) != RT_UNROUTED); if (!assertion__) { log_pexpect((where_t) { .func = __func__, . basename = "kernel.c" , .line = 2815}, "%s", "!erouted(rosr->routing)" ); } assertion__; }); /* warn for now - requires fixing */ |
2816 | rosr->routing = RT_UNROUTED; |
2817 | |
2818 | /* no need to keep old value */ |
2819 | ro = route_owner(c, sr, &rosr, NULL((void*)0), NULL((void*)0)); |
2820 | } while (ro != NULL((void*)0)); |
2821 | } |
2822 | } |
2823 | |
2824 | /* all done -- clean up */ |
2825 | if (route_installed) { |
2826 | /* Success! */ |
2827 | |
2828 | if (bspp != NULL((void*)0)) { |
2829 | free_bare_shunt(bspp); |
2830 | } else if (ero != NULL((void*)0) && ero != c) { |
2831 | /* check if ero is an ancestor of c. */ |
2832 | struct connection *ero2; |
2833 | |
2834 | for (ero2 = c; ero2 != NULL((void*)0) && ero2 != c; |
2835 | ero2 = ero2->policy_next) |
2836 | ; |
2837 | |
2838 | if (ero2 == NULL((void*)0)) { |
2839 | /* |
2840 | * By elimination, we must be eclipsing ero. |
2841 | * Checked above. |
2842 | */ |
2843 | if (ero->spd.routing != RT_ROUTED_ECLIPSED) { |
2844 | ero->spd.routing = RT_ROUTED_ECLIPSED; |
2845 | eclipse_count++; |
2846 | } |
2847 | } |
2848 | } |
2849 | |
2850 | if (st == NULL((void*)0)) { |
2851 | passert(sr->eroute_owner == SOS_NOBODY){ _Bool assertion__ = sr->eroute_owner == 0; if (!assertion__ ) { lsw_passert_fail((where_t) { .func = __func__, .basename = "kernel.c" , .line = 2851}, "%s", "sr->eroute_owner == SOS_NOBODY" ); } }; |
2852 | sr->routing = RT_ROUTED_PROSPECTIVE; |
2853 | } else { |
2854 | sr->routing = RT_ROUTED_TUNNEL; |
2855 | connection_buf cib; |
2856 | dbg("route_and_eroute: instance "PRI_CONNECTION", setting eroute_owner {spd=%p,sr=%p} to #%lu (was #%lu) (newest_ipsec_sa=#%lu)",{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("route_and_eroute: instance ""\"%s\"%s"", setting eroute_owner {spd=%p,sr=%p} to #%lu (was #%lu) (newest_ipsec_sa=#%lu)" , (st->st_connection)->name, str_connection_instance(st ->st_connection, &cib), &st->st_connection-> spd, sr, st->st_serialno, sr->eroute_owner, st->st_connection ->newest_ipsec_sa); } } |
2857 | pri_connection(st->st_connection, &cib),{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("route_and_eroute: instance ""\"%s\"%s"", setting eroute_owner {spd=%p,sr=%p} to #%lu (was #%lu) (newest_ipsec_sa=#%lu)" , (st->st_connection)->name, str_connection_instance(st ->st_connection, &cib), &st->st_connection-> spd, sr, st->st_serialno, sr->eroute_owner, st->st_connection ->newest_ipsec_sa); } } |
2858 | &st->st_connection->spd, sr,{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("route_and_eroute: instance ""\"%s\"%s"", setting eroute_owner {spd=%p,sr=%p} to #%lu (was #%lu) (newest_ipsec_sa=#%lu)" , (st->st_connection)->name, str_connection_instance(st ->st_connection, &cib), &st->st_connection-> spd, sr, st->st_serialno, sr->eroute_owner, st->st_connection ->newest_ipsec_sa); } } |
2859 | st->st_serialno,{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("route_and_eroute: instance ""\"%s\"%s"", setting eroute_owner {spd=%p,sr=%p} to #%lu (was #%lu) (newest_ipsec_sa=#%lu)" , (st->st_connection)->name, str_connection_instance(st ->st_connection, &cib), &st->st_connection-> spd, sr, st->st_serialno, sr->eroute_owner, st->st_connection ->newest_ipsec_sa); } } |
2860 | sr->eroute_owner,{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("route_and_eroute: instance ""\"%s\"%s"", setting eroute_owner {spd=%p,sr=%p} to #%lu (was #%lu) (newest_ipsec_sa=#%lu)" , (st->st_connection)->name, str_connection_instance(st ->st_connection, &cib), &st->st_connection-> spd, sr, st->st_serialno, sr->eroute_owner, st->st_connection ->newest_ipsec_sa); } } |
2861 | st->st_connection->newest_ipsec_sa){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("route_and_eroute: instance ""\"%s\"%s"", setting eroute_owner {spd=%p,sr=%p} to #%lu (was #%lu) (newest_ipsec_sa=#%lu)" , (st->st_connection)->name, str_connection_instance(st ->st_connection, &cib), &st->st_connection-> spd, sr, st->st_serialno, sr->eroute_owner, st->st_connection ->newest_ipsec_sa); } }; |
2862 | sr->eroute_owner = st->st_serialno; |
2863 | /* clear host shunts that clash with freshly installed route */ |
2864 | clear_narrow_holds(&sr->this.client, &sr->that.client, |
2865 | sr->this.protocol); |
2866 | } |
2867 | |
2868 | #ifdef IPSEC_CONNECTION_LIMIT |
2869 | if (new_eroute) { |
2870 | num_ipsec_eroute++; |
2871 | loglog(RC_COMMENT, |
2872 | "%d IPsec connections are currently being managed", |
2873 | num_ipsec_eroute); |
2874 | } |
2875 | #endif |
2876 | |
2877 | return TRUE1; |
2878 | } else { |
2879 | /* Failure! Unwind our work. */ |
2880 | if (firewall_notified && sr->eroute_owner == SOS_NOBODY0) { |
2881 | if (!do_command(c, sr, "down", st)) |
2882 | dbg("down command returned an error"){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("down command returned an error"); } }; |
2883 | } |
2884 | |
2885 | if (eroute_installed) { |
2886 | /* |
2887 | * Restore original eroute, if we can. |
2888 | * Since there is nothing much to be done if |
2889 | * the restoration fails, ignore success or failure. |
2890 | */ |
2891 | if (bspp != NULL((void*)0)) { |
2892 | /* |
2893 | * Restore old bare_shunt. |
2894 | * I don't think that this case is very likely. |
2895 | * Normally a bare shunt would have been |
2896 | * assigned to a connection before we've |
2897 | * gotten this far. |
2898 | */ |
2899 | struct bare_shunt *bs = *bspp; |
2900 | |
2901 | if (!raw_eroute(&bs->said.dst, /* should be useless */ |
2902 | &bs->our_client, |
2903 | &bs->said.dst, /* should be useless */ |
2904 | &bs->peer_client, |
2905 | bs->said.spi, /* unused? network order */ |
2906 | bs->said.spi, /* network order */ |
2907 | &ip_protocol_internal, /* proto */ |
2908 | sr->this.protocol, /* transport_proto */ |
2909 | ET_INT, |
2910 | null_proto_info, |
2911 | deltatime(SHUNT_PATIENCE((2 * 10) * 15 / 2)), |
2912 | calculate_sa_prio(c, FALSE0), |
2913 | NULL((void*)0), |
2914 | 0, |
2915 | ERO_REPLACE, |
2916 | "restore", |
2917 | NULL((void*)0))) /* bare shunt are not associated with any connection so no security label */ |
2918 | { |
2919 | libreswan_log("raw_eroute() in route_and_eroute() failed to restore/replace SA")loglog(RC_LOG, "raw_eroute() in route_and_eroute() failed to restore/replace SA" ); |
2920 | } |
2921 | } else if (ero != NULL((void*)0)) { |
2922 | passert(esr != NULL){ _Bool assertion__ = esr != ((void*)0); if (!assertion__) { lsw_passert_fail ((where_t) { .func = __func__, .basename = "kernel.c" , .line = 2922}, "%s", "esr != NULL"); } }; |
2923 | /* restore ero's former glory */ |
2924 | if (esr->eroute_owner == SOS_NOBODY0) { |
2925 | /* note: normal or eclipse case */ |
2926 | if (!shunt_eroute(ero, esr, |
2927 | esr->routing, |
2928 | ERO_REPLACE, |
2929 | "restore")) { |
2930 | libreswan_log("shunt_eroute() in route_and_eroute() failed restore/replace")loglog(RC_LOG, "shunt_eroute() in route_and_eroute() failed restore/replace" ); |
2931 | } |
2932 | } else { |
2933 | /* |
2934 | * Try to find state that owned eroute. |
2935 | * Don't do anything if it cannot be |
2936 | * found. |
2937 | * This case isn't likely since we |
2938 | * don't run the updown script when |
2939 | * replacing a SA group with its |
2940 | * successor (for the same conn). |
2941 | */ |
2942 | struct state *ost = |
2943 | state_with_serialno( |
2944 | esr->eroute_owner); |
2945 | |
2946 | if (ost != NULL((void*)0)) { |
2947 | if (!sag_eroute(ost, esr, |
2948 | ERO_REPLACE, |
2949 | "restore")) |
2950 | libreswan_log("sag_eroute() in route_and_eroute() failed restore/replace")loglog(RC_LOG, "sag_eroute() in route_and_eroute() failed restore/replace" ); |
2951 | } |
2952 | } |
2953 | } else { |
2954 | /* there was no previous eroute: delete whatever we installed */ |
2955 | if (st == NULL((void*)0)) { |
2956 | if (!shunt_eroute(c, sr, |
2957 | sr->routing, |
2958 | ERO_DELETE, |
2959 | "delete")) { |
2960 | libreswan_log("shunt_eroute() in route_and_eroute() failed in !st case for delete")loglog(RC_LOG, "shunt_eroute() in route_and_eroute() failed in !st case for delete" ); |
2961 | } |
2962 | } else { |
2963 | if (!sag_eroute(st, sr, |
2964 | ERO_DELETE, |
2965 | "delete")) { |
2966 | libreswan_log("shunt_eroute() in route_and_eroute() failed in st case for delete")loglog(RC_LOG, "shunt_eroute() in route_and_eroute() failed in st case for delete" ); |
2967 | } |
2968 | } |
2969 | } |
2970 | } |
2971 | |
2972 | return FALSE0; |
2973 | } |
2974 | } |
2975 | |
2976 | bool_Bool install_ipsec_sa(struct state *st, bool_Bool inbound_also) |
2977 | { |
2978 | dbg("install_ipsec_sa() for #%lu: %s", st->st_serialno,{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("install_ipsec_sa() for #%lu: %s", st->st_serialno , inbound_also ? "inbound and outbound" : "outbound only"); } } |
2979 | inbound_also ? "inbound and outbound" : "outbound only"){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("install_ipsec_sa() for #%lu: %s", st->st_serialno , inbound_also ? "inbound and outbound" : "outbound only"); } }; |
2980 | |
2981 | enum routability rb = could_route(st->st_connection, st->st_logger); |
2982 | |
2983 | switch (rb) { |
2984 | case route_easy: |
2985 | case route_unnecessary: |
2986 | case route_nearconflict: |
2987 | break; |
2988 | |
2989 | default: |
2990 | return false0; |
2991 | } |
2992 | |
2993 | /* (attempt to) actually set up the SA group */ |
2994 | |
2995 | /* setup outgoing SA if we haven't already */ |
2996 | if (!st->st_outbound_done) { |
2997 | if (!setup_half_ipsec_sa(st, FALSE0)) { |
2998 | return FALSE0; |
2999 | } |
3000 | |
3001 | dbg("set up outgoing SA, ref=%u/%u", st->st_ref,{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("set up outgoing SA, ref=%u/%u", st->st_ref , st->st_ref_peer); } } |
3002 | st->st_ref_peer){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("set up outgoing SA, ref=%u/%u", st->st_ref , st->st_ref_peer); } }; |
3003 | st->st_outbound_done = TRUE1; |
3004 | } |
3005 | |
3006 | /* now setup inbound SA */ |
3007 | if (st->st_ref == IPSEC_SAREF_NULL((IPsecSAref_t)0u) && inbound_also) { |
3008 | if (!setup_half_ipsec_sa(st, TRUE1)) |
3009 | return FALSE0; |
3010 | |
3011 | dbg("set up incoming SA, ref=%u/%u", st->st_ref,{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("set up incoming SA, ref=%u/%u", st->st_ref , st->st_ref_peer); } } |
3012 | st->st_ref_peer){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("set up incoming SA, ref=%u/%u", st->st_ref , st->st_ref_peer); } }; |
3013 | |
3014 | /* |
3015 | * We successfully installed an IPsec SA, meaning it is safe |
3016 | * to clear our revival back-off delay. This is based on the |
3017 | * assumption that an unwilling partner might complete an IKE |
3018 | * SA to us, but won't complete an IPsec SA to us. |
3019 | */ |
3020 | st->st_connection->temp_vars.revive_delay = 0; |
3021 | } |
3022 | |
3023 | if (rb == route_unnecessary) |
3024 | return TRUE1; |
3025 | |
3026 | struct spd_route *sr = &st->st_connection->spd; |
3027 | |
3028 | if (st->st_connection->remotepeertype == CISCO && sr->spd_next != NULL((void*)0)) |
3029 | sr = sr->spd_next; |
3030 | |
3031 | /* for (sr = &st->st_connection->spd; sr != NULL; sr = sr->next) */ |
3032 | for (; sr != NULL((void*)0); sr = sr->spd_next) { |
3033 | dbg("sr for #%lu: %s", st->st_serialno,{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("sr for #%lu: %s", st->st_serialno, enum_name (&routing_story, sr->routing)); } } |
3034 | enum_name(&routing_story, sr->routing)){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("sr for #%lu: %s", st->st_serialno, enum_name (&routing_story, sr->routing)); } }; |
3035 | |
3036 | /* |
3037 | * if the eroute owner is not us, then make it us. |
3038 | * See test co-terminal-02, pluto-rekey-01, |
3039 | * pluto-unit-02/oppo-twice |
3040 | */ |
3041 | pexpect(sr->eroute_owner == SOS_NOBODY ||({ _Bool assertion__ = sr->eroute_owner == 0 || sr->routing >= RT_ROUTED_TUNNEL; if (!assertion__) { log_pexpect((where_t ) { .func = __func__, .basename = "kernel.c" , .line = 3042}, "%s", "sr->eroute_owner == SOS_NOBODY || sr->routing >= RT_ROUTED_TUNNEL" ); } assertion__; }) |
3042 | sr->routing >= RT_ROUTED_TUNNEL)({ _Bool assertion__ = sr->eroute_owner == 0 || sr->routing >= RT_ROUTED_TUNNEL; if (!assertion__) { log_pexpect((where_t ) { .func = __func__, .basename = "kernel.c" , .line = 3042}, "%s", "sr->eroute_owner == SOS_NOBODY || sr->routing >= RT_ROUTED_TUNNEL" ); } assertion__; }); |
3043 | |
3044 | if (sr->eroute_owner != st->st_serialno && |
3045 | sr->routing != RT_UNROUTED_KEYED) { |
3046 | if (!route_and_eroute(st->st_connection, sr, st)) { |
3047 | delete_ipsec_sa(st); |
3048 | /* |
3049 | * XXX go and unroute any SRs that were |
3050 | * successfully routed already. |
3051 | */ |
3052 | return false0; |
3053 | } |
3054 | } |
3055 | } |
3056 | |
3057 | /* XXX why is this needed? Skip the bogus original conn? */ |
3058 | if (st->st_connection->remotepeertype == CISCO) { |
3059 | struct spd_route *srcisco = st->st_connection->spd.spd_next; |
3060 | |
3061 | if (srcisco != NULL((void*)0)) { |
3062 | st->st_connection->spd.eroute_owner = srcisco->eroute_owner; |
3063 | st->st_connection->spd.routing = srcisco->routing; |
3064 | } |
3065 | } |
3066 | |
3067 | if (inbound_also) |
3068 | linux_audit_conn(st, LAK_CHILD_START); |
3069 | return true1; |
3070 | } |
3071 | |
3072 | bool_Bool migrate_ipsec_sa(struct state *st) |
3073 | { |
3074 | switch (kernel_ops->type) { |
3075 | case USE_XFRM: |
3076 | /* support ah? if(!st->st_esp.present && !st->st_ah.present)) */ |
3077 | if (!st->st_esp.present) { |
3078 | libreswan_log("mobike SA migration only support ESP SA")loglog(RC_LOG, "mobike SA migration only support ESP SA"); |
3079 | return FALSE0; |
3080 | } |
3081 | |
3082 | if (!kernel_ops->migrate_sa(st)) |
3083 | return FALSE0; |
3084 | |
3085 | return TRUE1; |
3086 | |
3087 | default: |
3088 | dbg("Usupported kernel stack in migrate_ipsec_sa"){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("Usupported kernel stack in migrate_ipsec_sa") ; } }; |
3089 | return FALSE0; |
3090 | } |
3091 | } |
3092 | |
3093 | /* |
3094 | * Delete an IPSEC SA. |
3095 | * we may not succeed, but we bull ahead anyway because |
3096 | * we cannot do anything better by recognizing failure |
3097 | * This used to have a parameter bool inbound_only, but |
3098 | * the saref code changed to always install inbound before |
3099 | * outbound so this it was always false, and thus removed |
3100 | * |
3101 | */ |
3102 | void delete_ipsec_sa(struct state *st) |
3103 | { |
3104 | /* XXX in IKEv2 we get a spurious call with a parent st :( */ |
3105 | if (IS_CHILD_SA(st)((st)->st_clonedfrom != 0)) { |
3106 | if (st->st_esp.present || st->st_ah.present) { |
3107 | /* ESP or AH means this was an established IPsec SA */ |
3108 | linux_audit_conn(st, LAK_CHILD_DESTROY); |
3109 | } |
3110 | } else { |
3111 | libreswan_log("delete_ipsec_sa() called with (wrong?) parent state %s",loglog(RC_LOG, "delete_ipsec_sa() called with (wrong?) parent state %s" , st->st_state->name) |
3112 | st->st_state->name)loglog(RC_LOG, "delete_ipsec_sa() called with (wrong?) parent state %s" , st->st_state->name); |
3113 | } |
3114 | |
3115 | switch (kernel_ops->type) { |
3116 | case USE_XFRM: |
3117 | { |
3118 | /* |
3119 | * If the state is the eroute owner, we must adjust |
3120 | * the routing for the connection. |
3121 | */ |
3122 | struct connection *c = st->st_connection; |
3123 | struct spd_route *sr; |
3124 | |
3125 | for (sr = &c->spd; sr; sr = sr->spd_next) { |
3126 | if (sr->eroute_owner == st->st_serialno && |
3127 | sr->routing == RT_ROUTED_TUNNEL) { |
3128 | sr->eroute_owner = SOS_NOBODY0; |
3129 | |
3130 | /* |
3131 | * Routing should become |
3132 | * RT_ROUTED_FAILURE, |
3133 | * but if POLICY_FAIL_NONE, then we |
3134 | * just go right back to |
3135 | * RT_ROUTED_PROSPECTIVE as if no |
3136 | * failure happened. |
3137 | */ |
3138 | sr->routing = |
3139 | (c->policy & |
3140 | POLICY_FAIL_MASK(((lset_t)1 << (POLICY_FAIL1_IX)) - ((lset_t)1 << (POLICY_FAIL0_IX)) + ((lset_t)1 << (POLICY_FAIL1_IX)))) == |
3141 | POLICY_FAIL_NONE(0 * ((lset_t)1 << (POLICY_FAIL0_IX))) ? |
3142 | RT_ROUTED_PROSPECTIVE : |
3143 | RT_ROUTED_FAILURE; |
3144 | |
3145 | if (sr == &c->spd && |
3146 | c->remotepeertype == CISCO) |
3147 | continue; |
3148 | |
3149 | (void) do_command(c, sr, "down", st); |
3150 | if ((c->policy & POLICY_OPPORTUNISTIC((lset_t)1 << (POLICY_OPPORTUNISTIC_IX))) && |
3151 | c->kind == CK_INSTANCE) { |
3152 | /* |
3153 | * in this case we get rid of |
3154 | * the IPSEC SA |
3155 | */ |
3156 | unroute_connection(c); |
3157 | } else if ((c->policy & POLICY_DONT_REKEY((lset_t)1 << (POLICY_DONT_REKEY_IX))) && |
3158 | c->kind == CK_INSTANCE) { |
3159 | /* |
3160 | * in this special case, |
3161 | * even if the connection |
3162 | * is still alive (due to |
3163 | * an ISAKMP SA), |
3164 | * we get rid of routing. |
3165 | * Even though there is still |
3166 | * an eroute, the c->routing |
3167 | * setting will convince |
3168 | * unroute_connection to |
3169 | * delete it. |
3170 | * unroute_connection |
3171 | * would be upset |
3172 | * if c->routing == |
3173 | * RT_ROUTED_TUNNEL |
3174 | */ |
3175 | unroute_connection(c); |
3176 | } else { |
3177 | if (!shunt_eroute(c, sr, |
3178 | sr->routing, |
3179 | ERO_REPLACE, |
3180 | "replace with shunt")) { |
3181 | libreswan_log("shunt_eroute() failed replace with shunt in delete_ipsec_sa()")loglog(RC_LOG, "shunt_eroute() failed replace with shunt in delete_ipsec_sa()" ); |
3182 | } |
3183 | } |
3184 | } |
3185 | } |
3186 | (void) teardown_half_ipsec_sa(st, FALSE0); |
3187 | } |
3188 | (void) teardown_half_ipsec_sa(st, TRUE1); |
3189 | |
3190 | break; |
3191 | default: |
3192 | dbg("unknown kernel stack in delete_ipsec_sa"){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("unknown kernel stack in delete_ipsec_sa"); } }; |
3193 | break; |
3194 | } /* switch kernel_ops->type */ |
3195 | } |
3196 | |
3197 | bool_Bool was_eroute_idle(struct state *st, deltatime_t since_when) |
3198 | { |
3199 | if (kernel_ops->eroute_idle != NULL((void*)0)) |
3200 | return kernel_ops->eroute_idle(st, since_when); |
3201 | |
3202 | /* it is never idle if we can't check */ |
3203 | return FALSE0; |
3204 | } |
3205 | |
3206 | /* |
3207 | * get information about a given sa - needs merging with was_eroute_idle |
3208 | * |
3209 | * Note: this mutates *st. |
3210 | */ |
3211 | bool_Bool get_sa_info(struct state *st, bool_Bool inbound, deltatime_t *ago /* OUTPUT */) |
3212 | { |
3213 | struct connection *const c = st->st_connection; |
3214 | |
3215 | if (kernel_ops->get_sa == NULL((void*)0) || (!st->st_esp.present && !st->st_ah.present)) { |
3216 | return FALSE0; |
3217 | } |
3218 | |
3219 | const struct ip_protocol *proto; |
3220 | struct ipsec_proto_info *p2; |
3221 | |
3222 | if (st->st_esp.present) { |
3223 | proto = &ip_protocol_esp; |
3224 | p2 = &st->st_esp; |
3225 | } else if (st->st_ah.present) { |
3226 | proto = &ip_protocol_ah; |
3227 | p2 = &st->st_ah; |
3228 | } else { |
3229 | return FALSE0; |
3230 | } |
3231 | |
3232 | const ip_address *src, *dst; |
3233 | ipsec_spi_t spi; |
3234 | bool_Bool redirected = FALSE0; |
3235 | ip_address tmp_ip; |
3236 | |
3237 | /* |
3238 | * if we were redirected (using the REDIRECT |
3239 | * mechanism), change |
3240 | * spd.that.host_addr temporarily, we reset |
3241 | * it back later |
3242 | */ |
3243 | if (!sameaddr(&st->st_remote_endpoint, &c->spd.that.host_addr) && |
3244 | address_is_specified(&c->temp_vars.redirect_ip)) { |
3245 | redirected = TRUE1; |
3246 | tmp_ip = c->spd.that.host_addr; |
3247 | tmp_ip.version = c->spd.that.host_addr.version; |
3248 | tmp_ip.hport = c->spd.that.host_addr.hport; |
3249 | c->spd.that.host_addr = st->st_remote_endpoint; |
3250 | } |
3251 | |
3252 | if (inbound) { |
3253 | src = &c->spd.that.host_addr; |
3254 | dst = &c->spd.this.host_addr; |
3255 | spi = p2->our_spi; |
3256 | } else { |
3257 | src = &c->spd.this.host_addr; |
3258 | dst = &c->spd.that.host_addr; |
3259 | spi = p2->attrs.spi; |
3260 | } |
3261 | |
3262 | char text_said[SATOT_BUFsizeof(said_buf)]; |
3263 | |
3264 | set_text_said(text_said, dst, spi, proto); |
3265 | |
3266 | struct kernel_sa sa = { |
3267 | .spi = spi, |
3268 | .proto = proto, |
3269 | .src.address = src, |
3270 | .dst.address = dst, |
3271 | .text_said = text_said, |
3272 | }; |
3273 | |
3274 | dbg("get_sa_info %s", text_said){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("get_sa_info %s", text_said); } }; |
3275 | |
3276 | uint64_t bytes; |
3277 | uint64_t add_time; |
3278 | |
3279 | if (!kernel_ops->get_sa(&sa, &bytes, &add_time)) |
3280 | return FALSE0; |
3281 | |
3282 | p2->add_time = add_time; |
3283 | |
3284 | /* field has been set? */ |
3285 | passert(!is_monotime_epoch(p2->our_lastused)){ _Bool assertion__ = !is_monotime_epoch(p2->our_lastused) ; if (!assertion__) { lsw_passert_fail((where_t) { .func = __func__ , .basename = "kernel.c" , .line = 3285}, "%s", "!is_monotime_epoch(p2->our_lastused)" ); } }; |
3286 | passert(!is_monotime_epoch(p2->peer_lastused)){ _Bool assertion__ = !is_monotime_epoch(p2->peer_lastused ); if (!assertion__) { lsw_passert_fail((where_t) { .func = __func__ , .basename = "kernel.c" , .line = 3286}, "%s", "!is_monotime_epoch(p2->peer_lastused)" ); } }; |
3287 | |
3288 | if (inbound) { |
3289 | if (bytes > p2->our_bytes) { |
3290 | p2->our_bytes = bytes; |
3291 | p2->our_lastused = mononow(); |
3292 | } |
3293 | if (ago != NULL((void*)0)) |
3294 | *ago = monotimediff(mononow(), p2->our_lastused); |
3295 | } else { |
3296 | if (bytes > p2->peer_bytes) { |
3297 | p2->peer_bytes = bytes; |
3298 | p2->peer_lastused = mononow(); |
3299 | } |
3300 | if (ago != NULL((void*)0)) |
3301 | *ago = monotimediff(mononow(), p2->peer_lastused); |
3302 | } |
3303 | |
3304 | if (redirected) |
3305 | c->spd.that.host_addr = tmp_ip; |
3306 | |
3307 | return TRUE1; |
3308 | } |
3309 | |
3310 | bool_Bool orphan_holdpass(const struct connection *c, struct spd_route *sr, |
3311 | int transport_proto, ipsec_spi_t failure_shunt) |
3312 | { |
3313 | enum routing_t ro = sr->routing, /* routing, old */ |
3314 | rn = ro; /* routing, new */ |
3315 | ipsec_spi_t negotiation_shunt = (c->policy & POLICY_NEGO_PASS((lset_t)1 << (POLICY_NEGO_PASS_IX))) ? SPI_PASS256 : SPI_DROP257; |
3316 | |
3317 | if (negotiation_shunt != failure_shunt ) { |
3318 | dbg("failureshunt != negotiationshunt, needs replacing"){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("failureshunt != negotiationshunt, needs replacing" ); } }; |
3319 | } else { |
3320 | dbg("failureshunt == negotiationshunt, no replace needed"){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("failureshunt == negotiationshunt, no replace needed" ); } }; |
3321 | } |
3322 | |
3323 | dbg("orphan_holdpass() called for %s with transport_proto '%d' and sport %d and dport %d",{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("orphan_holdpass() called for %s with transport_proto '%d' and sport %d and dport %d" , c->name, transport_proto, sr->this.port, sr->that. port); } } |
3324 | c->name, transport_proto, sr->this.port, sr->that.port){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("orphan_holdpass() called for %s with transport_proto '%d' and sport %d and dport %d" , c->name, transport_proto, sr->this.port, sr->that. port); } }; |
3325 | |
3326 | passert(LHAS(LELEM(CK_PERMANENT) | LELEM(CK_INSTANCE) |{ _Bool assertion__ = (((((lset_t)1 << (CK_PERMANENT)) | ((lset_t)1 << (CK_INSTANCE)) | ((lset_t)1 << (CK_GOING_AWAY ))) & ((lset_t)1 << (c->kind))) != ((lset_t)0)); if (!assertion__) { lsw_passert_fail((where_t) { .func = __func__ , .basename = "kernel.c" , .line = 3327}, "%s", "LHAS(LELEM(CK_PERMANENT) | LELEM(CK_INSTANCE) | LELEM(CK_GOING_AWAY), c->kind)" ); } } |
3327 | LELEM(CK_GOING_AWAY), c->kind)){ _Bool assertion__ = (((((lset_t)1 << (CK_PERMANENT)) | ((lset_t)1 << (CK_INSTANCE)) | ((lset_t)1 << (CK_GOING_AWAY ))) & ((lset_t)1 << (c->kind))) != ((lset_t)0)); if (!assertion__) { lsw_passert_fail((where_t) { .func = __func__ , .basename = "kernel.c" , .line = 3327}, "%s", "LHAS(LELEM(CK_PERMANENT) | LELEM(CK_INSTANCE) | LELEM(CK_GOING_AWAY), c->kind)" ); } }; |
3328 | |
3329 | switch (ro) { |
3330 | case RT_UNROUTED_HOLD: |
3331 | rn = RT_UNROUTED; |
3332 | dbg("orphan_holdpass unrouted: hold -> pass"){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("orphan_holdpass unrouted: hold -> pass"); } }; |
3333 | break; |
3334 | case RT_UNROUTED: |
3335 | rn = RT_UNROUTED_HOLD; |
3336 | dbg("orphan_holdpass unrouted: pass -> hold"){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("orphan_holdpass unrouted: pass -> hold"); } }; |
3337 | break; |
3338 | case RT_ROUTED_HOLD: |
3339 | rn = RT_ROUTED_PROSPECTIVE; |
3340 | dbg("orphan_holdpass routed: hold -> trap (?)"){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("orphan_holdpass routed: hold -> trap (?)") ; } }; |
3341 | break; |
3342 | default: |
3343 | dbg("no routing change needed for ro=%s - negotiation shunt matched failure shunt?",{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("no routing change needed for ro=%s - negotiation shunt matched failure shunt?" , enum_name(&routing_story, ro)); } } |
3344 | enum_name(&routing_story, ro)){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("no routing change needed for ro=%s - negotiation shunt matched failure shunt?" , enum_name(&routing_story, ro)); } }; |
3345 | break; |
3346 | } |
3347 | |
3348 | dbg("orphaning holdpass for connection '%s', routing was %s, needs to be %s",{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("orphaning holdpass for connection '%s', routing was %s, needs to be %s" , c->name, enum_name(&routing_story, ro), enum_name(& routing_story, rn)); } } |
3349 | c->name,{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("orphaning holdpass for connection '%s', routing was %s, needs to be %s" , c->name, enum_name(&routing_story, ro), enum_name(& routing_story, rn)); } } |
3350 | enum_name(&routing_story, ro),{ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("orphaning holdpass for connection '%s', routing was %s, needs to be %s" , c->name, enum_name(&routing_story, ro), enum_name(& routing_story, rn)); } } |
3351 | enum_name(&routing_story, rn)){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("orphaning holdpass for connection '%s', routing was %s, needs to be %s" , c->name, enum_name(&routing_story, ro), enum_name(& routing_story, rn)); } }; |
3352 | |
3353 | { |
3354 | /* are we replacing a bare shunt ? */ |
3355 | setportof(htons(sr->this.port), &sr->this.client.addr){ *(&sr->this.client.addr) = set_endpoint_hport((& sr->this.client.addr), ntohs(htons(sr->this.port))); }; |
3356 | setportof(htons(sr->that.port), &sr->that.client.addr){ *(&sr->that.client.addr) = set_endpoint_hport((& sr->that.client.addr), ntohs(htons(sr->that.port))); }; |
3357 | struct bare_shunt **old = bare_shunt_ptr(&sr->this.client, &sr->that.client, sr->this.protocol); |
3358 | |
3359 | if (old != NULL((void*)0)) { |
3360 | free_bare_shunt(old); |
3361 | } |
3362 | } |
3363 | |
3364 | /* create the bare shunt and update kernel policy if needed */ |
3365 | { |
3366 | struct bare_shunt *bs = alloc_thing(struct bare_shunt, "orphan shunt")((struct bare_shunt*) alloc_bytes(sizeof(struct bare_shunt), ( "orphan shunt"))); |
3367 | |
3368 | bs->why = "oe-failing"; |
3369 | bs->our_client = sr->this.client; |
3370 | bs->peer_client = sr->that.client; |
3371 | bs->transport_proto = sr->this.protocol; |
3372 | bs->policy_prio = BOTTOM_PRIO((policy_prio_t)0); |
3373 | |
3374 | bs->said = said3(&subnet_type(&sr->this.client)->any_address, |
3375 | htonl(negotiation_shunt), &ip_protocol_internal); |
3376 | |
3377 | bs->count = 0; |
3378 | bs->last_activity = mononow(); |
3379 | if (strstr(c->name, "/32") != NULL((void*)0) || strstr(c->name, "/128") != NULL((void*)0)) { |
3380 | bs->from_cn = clone_str(c->name, "conn name in bare shunt")((c->name) == ((void*)0) ? ((void*)0) : clone_bytes((c-> name), strlen((c->name)) + 1, ("conn name in bare shunt")) ); |
3381 | } |
3382 | |
3383 | bs->next = bare_shunts; |
3384 | bare_shunts = bs; |
3385 | dbg_bare_shunt("add", bs); |
3386 | |
3387 | /* update kernel policy if needed */ |
3388 | /* This really causes the name to remain "oe-failing", we should be able to update only only the name of the shunt */ |
3389 | if (negotiation_shunt != failure_shunt ) { |
3390 | dbg("replacing negotiation_shunt with failure_shunt"){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("replacing negotiation_shunt with failure_shunt" ); } }; |
3391 | if (!replace_bare_shunt(&sr->this.host_addr, &sr->that.host_addr, bs->policy_prio, |
3392 | negotiation_shunt, failure_shunt, bs->transport_proto, |
3393 | "oe-failed")) { |
3394 | libreswan_log("assign_holdpass() failed to update shunt policy")loglog(RC_LOG, "assign_holdpass() failed to update shunt policy" ); |
3395 | } |
3396 | } else { |
3397 | dbg("No need to replace negotiation_shunt with failure_shunt - they are the same"){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("No need to replace negotiation_shunt with failure_shunt - they are the same" ); } }; |
3398 | } |
3399 | } |
3400 | |
3401 | /* change routing so we don't get cleared out when state/connection dies */ |
3402 | sr->routing = rn; |
3403 | dbg("orphan_holdpas() done - returning success"){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("orphan_holdpas() done - returning success"); } }; |
3404 | return TRUE1; |
3405 | } |
3406 | |
3407 | /* XXX move to proper kernel_ops in kernel_netlink */ |
3408 | void expire_bare_shunts(void) |
3409 | { |
3410 | dbg("checking for aged bare shunts from shunt table to expire"){ if ((cur_debugging & (((lset_t)1 << (DBG_BASE_IX) )))) { DBG_log("checking for aged bare shunts from shunt table to expire" ); } }; |
3411 | for (struct bare_shunt **bspp = &bare_shunts; *bspp != NULL((void*)0); ) { |
3412 | struct bare_shunt *bsp = *bspp; |
3413 | time_t age = deltasecs(monotimediff(mononow(), bsp->last_activity)); |
3414 | struct connection *c = NULL((void*)0); |
3415 | |
3416 | if (age > deltasecs(pluto_shunt_lifetime)) { |
3417 | dbg_bare_shunt("expiring old", bsp); |
3418 | if (bsp->from_cn != NULL((void*)0)) { |
3419 | c = conn_by_name(bsp->from_cn, FALSE0); |
3420 | if (c != NULL((void*)0)) { |
3421 | if (!shunt_eroute(c, &c->spd, RT_ROUTED_PROSPECTIVE, ERO_ADD, "add")) { |
3422 | libreswan_log("trap shunt install failed ")loglog(RC_LOG, "trap shunt install failed "); |
3423 | } |
3424 | } |
3425 | } |
3426 | if (!delete_bare_shunt(&bsp->our_client.addr, &bsp->peer_client.addr, |
3427 | bsp->transport_proto, |
3428 | ntohl(bsp->said.spi), |
3429 | (bsp->from_cn == NULL((void*)0) ? "expire_bare_shunt" : |
3430 | "IGNORE_ON_XFRM: expire_bare_shunt"))) { |
3431 | log_global(RC_LOG_SERIOUS, null_fd, "failed to delete bare shunt"){ struct logger log_ = (struct logger) { .where = (where_t) { .func = __func__, .basename = "kernel.c" , .line = 3431}, .global_whackfd = ((struct fd *) ((void*)0)), .object = ((void*)0), .object_vec = &logger_global_vec, }; log_message(RC_LOG_SERIOUS, & log_, "failed to delete bare shunt"); }; |
3432 | } |
3433 | passert(bsp != *bspp){ _Bool assertion__ = bsp != *bspp; if (!assertion__) { lsw_passert_fail ((where_t) { .func = __func__, .basename = "kernel.c" , .line = 3433}, "%s", "bsp != *bspp"); } }; |
3434 | } else { |
3435 | dbg_bare_shunt("keeping recent", bsp); |
3436 | bspp = &bsp->next; |
3437 | } |
3438 | } |
3439 | } |